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Abstract

In an incomplete information model, investors' uncertainty about the underlying drift rate of a

�rm's fundamentals a�ects option prices through (i) endogenous and belief-dependent stochastic

volatility, (ii) stochastic covariance between returns and volatility, and (iii) a market price of

\belief risk." For the special case where the drift takes only two values, we provide an option

pricing formula using Fourier Transforms. The model calibrated to 1960-1998 S&P 500 real

earnings growth shows that investors' uncertainty explains intertemporal variation in the slope

and curvature of implied volatility curves as well as the conditional moments of the state-return

density obtained from option data. The calibrated model generates hedging `violations' of one-

factor markov and deterministic volatility function models with roughly empirical frequencies.

JEL Classi�cation: G12, G13

Key Words: Uncertainty, Changing Return-Volatility Correlation, Belief Risk, Put-Call Ratio,

Buttery Spread, Hedging Violations



Introduction

The empirical �nancial literature has established a number of stylized facts about the intertemporal

behavior of option prices that appear puzzling at �rst. For example, it has been observed that

options' implied volatility curves are most often negatively sloped with a \smile" (or \smirk") and

that they are highly unstable over time, with sudden changes in slope and shape.1 In fact, they

sometimes become positively sloped or show a \frown" rather than a \smile." Figure 1 illustrates

the range of observed implied volatility curves. Indeed, using middle-of-the month data on S&P

500 index options between 1986 to 1996, we �nd that the slope of the implied volatility curve

computed at the point where the current stock price equals the strike price (i.e. for at-the-money

options) was negative and/or had a positive �rst derivative (\smile") 88% and 78% of the time,

respectively. However, the slope and the curvature ipped sign 15 and 35 times, respectively, out of

the 122 monthly observations. In addition, it has been observed that the responses of option prices

to changes in stock prices are inconsistent with single-factor markov and deterministic volatility

function models. For example, Bakshi, Cao and Chen (1999) �nd that when the stock price

increases, oftentimes the call prices decrease or they increase too much.

A number of empirical and theoretical papers have proposed models for stock prices to

account for this behavior. For example, in their classic and inuential paper Hull and White

(1987) assume that stock return volatility varies stochastically over time and show that a negative

(positive) correlation between returns and volatility tends to generate a negatively (positively)

sloped implied volatility curve. Similarly, the possibility that stock prices jump at random times

also may help explain some of the stylized facts mentioned above. (See Bakshi, Cao and Chen

(1997) for a summary of these approaches.)

Although these models are useful for pricing purposes, they do not address the basic

economic question of why changes in volatility and changes in the correlation between returns and

volatility occur in the �rst place. This is because they start from a model in \reduced form": they

assume a set of properties for the stochastic process of stock prices and derive pricing implications.

Indeed, the need for an economic model explaining these phenomena has been realized in the

1The implied volatility of an option refers to the volatility level that has to be inserted into the Black and Scholes
formula in order for it to match the price of a traded option using as inputs the current stock price, dividend yield,
interest rate, and the strike price and maturity of that option contract. The implied volatility curve refers to the
levels of implied volatilities across strike prices. Black and Scholes assumptions predict a constant implied volatility
curve.
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literature: For example, discussing the results in Rubinstein (1985) about the sudden changes in

the slope of the implied volatility curve, Hull and White (1987) write:

In order for [Rubinstein's (1985) results] to support this model it is necessary to posit

that from one year [1976-77] to the next [1977-78], the correlation between stock prices

and the associated volatility reversed sign. It is di�cult to think of a convincing story

why this event should occur. (Page 298, Hull and White 1987)

This paper constructs a simple dynamic asset pricing model to provide an economic

justi�cation for this and the other stylized facts about the intertemporal behavior of option prices

that were mentioned above. Speci�cally, we assume that dividends of a �rm (or of the economy

as a whole) are generated by a standard lognormal process, whose drift rate is not observable by

investors. The drift rate can be assumed constant or it may change over time according to a known

stochastic process. Investors observe past realizations of dividends and possibly other signals and

use these data to estimate the true drift rate of the dividend process.

Under these assumptions, we �rst solve for equilibrium stock prices and show that equilib-

rium stock returns display stochastic volatility, stochastic covariance between returns and volatility

and a stochastic dividend yield. These properties of the stock return process are due to investors'

changes over time of (i) their estimate of the underlying drift rate of dividends and (ii) their con-

�dence in this estimate. For example, we �nd that when uncertainty over the true drift rate of

dividends is high, then return volatility is also high.2 Because investors' uncertainty changes ran-

domly over time in response to news in dividend and other signals, return volatility also changes

stochastically over time. Similarly, (i) and (ii) above also a�ect the covariance between returns and

volatility. For example, suppose that at some point in time investors have a high con�dence in a

high drift rate of dividends. A series of negative innovations in dividends has two e�ects: the �rst

is that the stock will move downward, generating a series of negative returns. The second e�ect

is that, at the same time, investors' con�dence in a high drift rate decreases, thereby increasing

their uncertainty and hence the equilibrium return volatility. These e�ects together generate a

negative correlation between returns and volatility. Similarly, if investors have high con�dence in

2We make a slight but often used distinction between risk and uncertainty: we reserve the term uncertainty for
situations where the risky process generating fundamentals in not fully known by agents. Whether this is the key
distinction between risk and uncertainty made by Frank Knight is a subject of interpretation and debate; see Jones
and Ostroy (1984) for a further discussion and references to the literature.
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a low estimate for the dividend drift rate and observe a series of high dividend realizations, we ob-

tain a positive correlation between returns and volatility. In conclusion, the updating of investors'

estimate of the dividend drift rate as well as their con�dence in it over time make the correlation

between return and volatility change stochastically over time. Since negative (positive) correlation

between return and volatility tend to generate a negative (positive) slope in the implied volatility

curve, this �nding provides a simple explanation for the \puzzling" behavior of the implied volatility

curve pointed out in the quote above.

This example also provides the intuition on why this model may generate very high or

very low sensitivity of option prices to changes in stock prices. A negative innovation in dividends

reduces the stock price and hence it has a direct negative e�ect on the call price. However, if the

negative dividend innovation also increases the uncertainty and hence the volatility of stock returns,

it will have an indirect positive e�ect on the call price. It could be the case that the indirect e�ect

is stronger than the direct e�ect, thereby generating a negative covariance between stock price and

call price changes; this violation, often found in the data, is a common bound on the delta of a call

option for all single-factor markov and deterministic volatility function models.

In addition to the implications mentioned above, we also �nd that investors' posterior

beliefs on the true drift rate of dividends play the role of (endogenously generated) non-traded

factors, a�ecting the value of traded assets and hence potentially demanding a market-price of risk.

This implies that investors' preference parameters may enter the option pricing formula if it is not

plausible to assume that investors know perfectly the underlying drift rate of dividends. Indeed, in

our model we recover the Black and Scholes formula when we assume that investors' have perfect

information of a constant drift rate of dividends. In this case, investors' beliefs are trivially constant

and hence these endogenous non-traded factors vanish.

As far as the methodology of the paper is concerned, we �nd it useful to discretize the

parameter space { i.e. the set of possible drifts for the dividend process { to obtain the dynamics

of investors' beliefs in closed form. This approach enables us to fully characterize stock returns,

return volatility, and the covariance between returns and volatility. Indeed, we are able to show

that the stock's return and volatility depend on a limited number of variables, which depend on

investors' estimated drift rate of dividends as well as their con�dence in it.

In the special case of a two-state model, we are also able to solve for option prices using

Fast Fourier Transform methods. Such methods have been useful for providing analytical results to
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several option pricing problems in recent years, such as those with stochastic jumps, and stochastic

volatility (some examples of this methodology are in Heston 1993, Bates 1996, Bakshi et al. 1997,

Scott 1997). As in these papers, we are able to reduce the option pricing problem to the numerical

Fourier Inversion of the solution of an ordinary di�erential equation (ODE). The ODE itself has no

explicit analytical solution, but its solution can be well approximated by a (small) �nite series of

polynomials. A numerical Fourier inversion yields the Fourier Transform of the state-return density

function. Option prices are then calculated as the sum of the value of four primitive securities, each

of which is obtained by evaluating the Fourier Transform at chosen points. The two-state model

is also particularly useful in comparative statics exercises. Using our option pricing formula, we

study the e�ects on option prices of changes in the persistence of a good or bad state, in investors'

coe�cient of risk aversion or in their information quality. We �nd for example that a higher degree

of risk aversion has ambiguous implications for the price of options, because it a�ects both return

volatility and equilibrium interest rates.

After detailing the implications of our model for option prices of the above �ndings, we

also provide a calibration of the model. Real earnings growth on the S&P 500 for the period 1960:01

- 1998:09 is �tted with a 2-state regime-switching model. The estimation procedure allows us to

back out the posterior probabilities of investors on the space of possible drift rates and hence to

compute proxies for investors' expected drift rate of earnings, their uncertainty, and the implied

theoretical return volatility and covariance between returns and volatility. The latter is shown to

be mainly negative over time (70% of the time), with occasional switches to a positive sign. In

addition, we provide evidence that the model-generated return volatility, which depends only on

the posterior beliefs of investors, can explain the S&P100 option volatility index. We also test two

further predictions of the state-return density function conditional on �ltered beliefs using options

data. The mean-reversion of the belief process implies that the return-density must be positively

(negatively) skewed in periods with low (high) beliefs. This implication is tested by using the ratio

of 3% OTM put-to-call prices. Secondly, the possibility of a large shift in beliefs implies greater

kurtosis of the return density function. Therefore the model implies low (high) kurtosis in periods

of high (low) uncertainty. For this, we test the implied volatility of a convexity measure of implied

volatility, or equivalently, the implied volatility buttery spread on the �ltered belief process. Both

tests support the implications of our model.
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There have been several similar learning models in the literature, of which we do not

attempt an exhaustive survey. For �nancial markets with learning in continuous-time Detemple

(1986), Dothan and Feldman (1986), and Gennotte (1986) used the results of the Kalman �lter

to characterize the learning of agents when the unobservable drift of returns followed a di�usion

process. This learning paradigm is a useful for understanding several aspects of �nancial decision

making as evident from the recent work of Brennan (1998), who resolves an important asset-

allocation puzzle by appealing to the role of learning about expected returns. Despite its several

advantages, Kalman �ltering models imply that the estimation error (the variance of the conditional

distribution of agents beliefs) follows a deterministic process that converges to a constant. This

property is inherited by the volatility of returns in these models. As an important exception, Yan

(1999) recently studied option pricing in a Kalman �ltering model where, despite the convergence

of estimation error, return volatility was stochastic due to variations in the riskless rate. Also in a

Gaussian incomplete information model, but with discrete periodic signals, Du�e and Lando (1999)

provide an analysis of the term structure of credit spreads with incomplete accounting information

about fundamentals of the �rm.

Detemple (1991) used the same assumption on the underlying di�usion process, but as-

sumed that agents started updating with a non-Gaussian prior. In his model, the estimation error

indeed exhibited stochastic variation over time, but was characterized by a large number (contin-

uum) of state variables. To exploit the stochastic estimation error of non-Gaussian models, David

(1997) studied the asset-allocation problem in a setting where the unobservable drift jumped be-

tween a �nite number of states. Using a �ltering result in Liptser and Shiryaayev (1977), he showed

that learning induces the leverage e�ect (a negative asymmetric relation between returns and future

volatility) on the market portfolio, as agents attempt to hedge the risk of changing estimation error.

With a single stock and this same �ltering problem characterizing the uncertainty about expected

dividend growth, Veronesi (1999b) showed that return volatility has GARCH properties and that

markets overreact to bad news in good times and underreact to good news in bad times. In an

exchange economy, Veronesi (1999a) shows that the volatility of stock-returns in this setting would

increase if agents received more precise signals on the unobserved drift. In this paper we study the

implications of stochastic estimation error on option prices.3

3In a somewhat similarly motivated paper, Campbell and Li (1999) study option prices in a model of exogenous
regime-switching volatility of stock returns. While option prices in their model also depend on beliefs of agents, due
to the lack of correlation between returns and volatility, their model implies symmetric implied volatility smiles.

5



The paper develops as follows: next section introduces the economic model and charac-

terizes investors' beliefs dynamics. In addition, it also characterizes stock prices and the process

for stock returns. Section 2 develops the partial di�erential equation for derivative security pricing

when there is uncertainty in the fundamentals. In addition, it draws out the implications on option

prices under some assumptions on the \fundamentals." Section 3 derives a closed form solution

for options in the special case where there are only two possible states, while Section 4 studies its

properties. Section 5 contains the calibration of the model and some empirical tests. Section 6

concludes.

1 The Model

Consider an economy populated by a continuum of investors with an iso-elastic utility function

U(c; t) = e��t c
1�

1� . LetW (t) = (W1(t);W2(t);W3(t))
0 be a three-dimensional vector of independent

Wiener processes. Dividends evolve according to a lognormal process

dx

x
= �dt+ �xdW (1)

where the 1 � 3 vector �x is assumed known and constant. The growth rate of dividends �(t) is

not observable and may move over time according to the process described below. In addition to

dividends, investors can infer the value of �(t) by observing another public signal described by:

de

e
= �dt+ �edW (2)

where again �e is a constant 1� 3 vector. The formulation (2) is analogous to the usual \signal =

value plus noise" in the discrete time setting. The choice of a lognormal process for signals is for

notational purposes only (see below) and has no substantive e�ect.

In order to keep the analysis simple, we also assume that the consumption process is

exogenously given and follows the process

dc

c
= �dt+ �cdW (3)
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where �(t) is also unobservable and �c is a 1� 3 constant matrix.4 This assumption enables us to

fully concentrate on the implications of uncertainty and learning on option prices, leaving aside the

implications due to market clearing conditions. However, notice that the special case of a Lucas

(1978) pure-exchange economy is obtained by setting c = x, � = � and �x = �c.

To complete the description of the model it is convenient to stack together the \observa-

tion" processes (1), (2) and (3): Let y = (x; e; c)0, so that

dy

y
= �(t)dt+�dW

where dy
y
is to be interpreted \element-by-element" division,

�(t) =

0BBB@
�(t)

�(t)

�(t)

1CCCA ; � =

0BBB@
�x

�e

�c

1CCCA
We will assume that the 3 � 3 matrix � is invertible. In order to fully characterize the process for

stock returns as well as the movements of investors' posterior distribution over time, it is convenient

to discretize the state space for dividend growth and consumption growth. That is to say, we assume

that � can take only the values in the �nite set [�1; :::; �n] with n possibly very large. Likewise, we

assume that consumption growth � can take only values in the �nite set [�1; :::; �n]. The transition

from one state �i = (�i; �i; �i) to another state �j = (�j ; �j ; �j) in the in�nitesimal interval � occurs

with probability

�ijdt = Pr (v(t+�) = vj jv(t) = vi)

For later reference, notice that if we let �x = (1; 0; 0)0, �e = (0; 1; 0)0 , and �c = (0; 0; 1)0, we

obtain �x = �0x�, �e = �0e�, �c = �0c�.

1.1 The Dynamics of Investors' Beliefs

Given the observation of y(t), investors form the posterior probability

�i(t) = Pr(�(t) = �ijF(t))
4The formulation leads to the stochastic discount factor process shown in (8). As a modeling strategy, we could

instead specify an exogenous process for the stochastic discount factor. The present speci�cation provides intuition
for comparative static experiments of changes in investors' risk-aversion on option prices.
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where F(t) is investors' �ltration at time t. Let � = (�1; :::; �n) be the vector of beliefs.

Lemma 1 Given an initial condition �(0) = b� with
Pn

i=1 b�i = 1 and 0 � b�i � 1 for all i, the

probabilities, �i(t) satisfy the system of n stochastic di�erential equations:

d�i = �idt+ �idfW (4)

where

�i = [��]i; �i = �i(�i � �)0
�
��0

�� 1
2 ; � =

nX
i=1

�i�i = Et

�
dy

y

�
(5)

and

dfW =
�
��0

�� 1
2

�
dy

y
�Et

�
dy

y

��
=
�
��0

�� 1
2 (�(t)� �)dt+

�
��0

�� 1
2 �dW (6)

Moreover, for every t > 0,
Pn

i=1 �(t) = 1.

Proof : See Liptser and Shiryaayev (1977).

The expressions in (5) are rather intuitive: the drift rate depends only on the prior belief

at time t, �(t), and the transition matrix �, and therefore the expression describes how the beliefs

are updated between t and t+� when no other information is available. The di�usion part in (4)

describes the impact on beliefs due to the observation of the vector y(t +�). Speci�cally, dfW is

simply the innovation process normalized by the (square root of) the variance covariance matrix

of the observation process dy=y. The impact of this normalized expectation error on belief �i is

described by �i: this tends to be high when there is some uncertainty about the true vector �.

In fact, notice that �i is close to zero for all i when � = (�1; :::; �n) is the degenerate distribution

giving probability one to the true value and zero otherwise. Finally, the precision of the signals

dy=y a�ects d�i through the variance covariance matrix ��0.

It is worth noticing that

nX
i=1

d�i =
nX
i=1

�idt+

 
nX
i=1

�i

!
dfW = 0 (7)

thereby ensuring that for all t,
Pn

i=1 �i = 1.

For later reference, we rewrite the fundamental process dy=y in terms of the new innovation

process dfW in the following corollary:

8



Corollary 1 The fundamental process dy follows the process dy=y = �vdt+(��0)
1
2 dfW; where dy=y

should be interpreted as \element-by-element" division.

Proof. In Appendix 1.

Hence, for example, the consumption process with respect to investors' �ltration is dc
c
=

�kdt+ �c (��
0)

1
2 dfW: Since dfW is an \innovations" process, under the separation principle it can be

used for dynamic optimization. See David (1997) for a discussion.

1.2 Stock Returns and the Risk-Free Rate

Given investors' utility function, we immediately obtain the stochastic discount factor as the

marginal utility of consumption m(t) = Uc(t; c) = e��tc� . By Ito's lemma,5

dm =

�
��� �(t) +

1

2
( + 1)�c�

0
c

�
mdt� m�cdW: (8)

Hence, the equilibrium stock price S(t) must satisfy the usual pricing relation:

m(t)S(t) = Et

�Z 1

t

m(s)x(s)ds

�
(9)

Proposition 1 (a) For all i = 1; :::; n, let b�i = ki � �i + � � 1
2( + 1)�c�

0
c + �c�

0
x > 0 Then,

for every t, the stock price is given by:

S(t) = x(t)

nX
i=1

�i(t)Ci (10)

where Ci's are positive constants satisfying b�iCi = 1 +
Pn

j=1 �ijCj for all i = 1; :::; n.

(b) The instantaneous risk-free rate is given by r = �+ �� 1
2( + 1)�c�

0
c where � =

Pn
i=1 �i�i.

(c) The price of a zero-coupon bond with maturity � is

B(t; �) =
nX
i=1

�iBi(�)

5It will be shown later that under investors' information �ltration the stochastic discount factor will follow dm=m =

�rdt� �c (��
0)

1

2 dfW: However, it is convenient for now to leave the process for the stochastic discount factor as in
(8).
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where Bi(�) = E
�
m(t+�)
m(t) j�(t) = �i

�
= [
]i (e

w1� ; :::; ewn� )0 and where w1; :::; wm are the eigen-

values of the matrix b� = ���diag(�)���� 1
2( + 1)�c�

0
c

�
and 
 is the matrix of column

eigenvectors of b�, normalized so that
Pn

j=1 !ij = 1 for all i = 1; ::; n.

Proof. In Appendix 1.

To interpret the above result about the stock price, it is shown in the appendix that

Ci =
1

uc(t; c)x(t)
Et

�Z 1

t

uc(s; c)x(s)dsj�(t) = �i

�
(11)

That is, each constant Ci represents investors' expectation of future dividends conditional on the

state being �i today, discounted by their marginal utility of consumption and normalized to make

it independent of the current dividend and time. Hence, a high Ci implies that investors would be

willing to pay a high price relative to the current dividend in state �i. Since they do not actually

observe the state �i, they weight each Ci by its conditional probability �i thereby obtaining (10).

Notice from equation (10) the stock price follows a continuous-path process, even if the

state space for dividend drift rates is discrete. Indeed, we can easily derive the following proposition:

Proposition 2 The stock return process is given by:

dS

S
= (�S � �) dt+ �SdfW

where

�S = r + 

�Pn
i=1 �iCi(�i � �)Pn

i=1 Ci�i
+ �c�

0
x

�
= r +  � Cov

�
dc

c
;
dS

S

�
(12)

� =
x

S
=

1Pn
i=1Ci�i

(13)

�S =

 
�x
�
��0

� 1
2 +

Pn
i=1Ci�i(�i � �)0 (��0)�

1
2Pn

i=1Ci�i

!
(14)

Proof. In Appendix 1.

This proposition shows that both the stock expected return and its volatility are changing

over time, depending on the distribution � = (�1; :::; �n).
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1.3 Return Volatility and its Covariance with Stock Returns

In this subsection we characterize the volatility of equilibrium stock returns as well as its covariance

with the return process itself. As is well known, these two quantities are extremely important in

determining the behavior of option prices. Even though it is not necessary for the result, we limit

our investigation to the case where the risk-free interest rate is constant. This will enable us to

better compare our option pricing results with Black and Scholes option prices, which also assume

a constant interest rate. In addition, this assumption makes sure that our results do not depend

on the behavior of an erratic stochastic interest rate.6 From proposition 1 a constant interest rate

is obtained in our model by assuming �1 = �2 = ::: = �n.

We start by introducing the following notation: Let

��i =
�iCi

�n
j=1�jCj

(15)

As in Veronesi (1999a), we call �� = (��1 ; :::; �
�
n) the value-weighted probability density: notice that

from equation (11) the weights Ci are the discounted expected value of future dividends. In this

sense, the ��i can be thought of as a state-price density function, where the states are �1,..., �n.

From now on, a star \*" denotes a quantity computed with respect to the distribution ��. For

example, �
�
denotes the mean � computed using the distribution ��. Similarly, let

�2� =
nX
i=1

�i
�
�i � �

�2
; ��2� =

nX
i=1

��i

�
�i � �

�
�2

(16)

be the variances of � computed using � and ��. We then have:

Proposition 3 Let �1 = �2 = ::: = �n and let b = (1; 1; 0) � (��0)�
1
2 . Then

(a) Return volatility is given by

V � �S�
0
S =

�
�x�

0
x + 2

�
�
� � �

�
+
�
�
� � �

�2
bb0
�

(17)

(b) Return volatility V follows the process

dV = �V dt+ �V dW; (18)

6The e�ects of a stochastic interest rate on option prices in the context of an incomplete information model are
explored in Yan (1999).
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where

�V =
�
��2� � �2�

�2
(bb0)2 + 2

�
Et

�
d�

�
�
�Et

�
d�
���

1 +
�
�
� � �

�
bb0
�

(19)

�V =
�
��2� � �2�

� �
1 +

�
�
� � �

�
bb0
�
2b; (20)

and Et

�
d�
�
and Et

�
d�

�
�
are the expected changes in the expected dividend drift rate according

to � and ��, respectively. That is,

Et

�
d�
�

=

 
nX
i=1

[��]i�i

!
dt (21)

Et

�
d�

�
�

=

 Pn
i=1[��]iCi(�i � �

�
)Pn

k=1 �kCk

� ��2� (�
� � �)bb0

!
dt (22)

(c) The covariance between return and volatility is given by

Cov

�
dV;

dS

S

�
� �V �

0
S = 2

�
��2� � �2�

� �
1 +

�
�
� � �

�
bb0
�2

(23)

Proof. In Appendix 1.

This proposition provides a general result on return volatility and its covariance with

returns. Importantly, we notice that return volatility is stochastic, it follows a predictable process,

and has a stochastic volatility. In particular, the time predictability of volatility has interesting

implications for option pricing. Consider the following simple example: Suppose that investors

have a very high con�dence in a particular state �i. In this case, from the de�nition of �� we �nd

that �
� � � and similarly �2�� � �2� . From equations (17) and (20), this implies that V is low and

the volatility of volatility, �V � 0. However, if � is non-zero, from equations (19), (21) and (22) we

may have �V positive and possibly high. Hence, even though today stock volatility is low, investors

expect high volatility in the future. This implies that the implied volatility of option prices is higher

than stock volatility.

The previous proposition also shows that the covariance between return and volatility is

positive or negative depending on whether the current posterior distribution of beliefs implies that

��2� is greater or smaller than �2� . That is,

Cov

�
dV;

dS

S

�
< 0 if and only if ��2� < �2�
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We can get intuition about this result by looking at the simple two-state case. In this case, the

return volatility V can be plotted as a function of the posterior probability of being in the high

state �2. We plot
p
V in Figure 5 for parameter values calibrated to S&P 500 real earnings growth.

Consider now the case where the probability of being in the high state, �2, is close to one. In this

case, � is high and �2� is small. A series of negative innovations in the dividend process decreases

the stock prices thereby generating negative returns. At the same time, it also decreases �2 and

hence increases return volatility V (as well as the level of uncertainty �2�). Since volatility increases

with negative returns, we have a negative covariance of return volatility and stock returns for �2

high. The opposite argument illustrates that when �2 is low we have a positive covariance between

return volatility and stock returns.

We make the above argument formal in the following corollary:

Corollary 2 Let �1 = �2. Then, V is a strictly concave function of � � �2 and Cov
�
dV; dS

S

�
<

0 if and only if � > �̂ where �̂ = argmax�V:

Proof. In Appendix 1.

2 The Value of Contingent Claims

In this section we determine the value of a contingent claim written on the stock price S. Since

the evolution of S is non-Markovian, we need to add all the state variables (i.e. beliefs) ��n =

(�1; :::; �n�1) in order to describe the economy. Another appeal to the Separation Principle (c.f.,

for example David 1997) implies that the system (S; �1; :::; �n�1) is Markovian.7 Let f(t; S; ��n)

denote the value at time t of the contingent claim, when the price of the stock is S and beliefs are

represented by the vector �

Proposition 4 Each security f(t; S; ��n) satis�es the following PDE:

rf =
@f

@t
+
@f

@S
S

�
r � 1Pn

i=1 Ci�i

�
+

n�1X
j=1

@f

@�j
(�j � �j(�j � ��)) +

1

2

@2f

@S2
S2�S�

0
S

+

n�1X
j=1

@2f

@S@�j
S�S�

0
i +

1

2

n�1X
k=1

n�1X
j=1

@f2

@�k@�j
�k�

0
j (24)

where �j is given by (5).

7Indeed, the system (S; �1; :::; �n�1) is Markovian because we always have �n = 1 �
Pn�1

j=1 �j .
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Proof. In Appendix 1.

This proposition shows that the price of any derivative security depends on investors'

posterior distribution � = (�1; :::; �n�1). Moreover, each probability �i has a market price of risk

given by:

Corollary 3 The market price of risk of belief �i is given by:

�i(�i � ��) = Cov

�
dc

c
; d�i

�
(25)

Proof. In Appendix 1.

It is interesting to notice that the market price of risk of each \belief" �i is positive

or negative depending on whether the consumption drift rate �i is above or below the expected

consumption drift ��. The assumption of an exogenously given constant and known consumption

growth can be modeled in this framework by assuming that �i = �j = ��. In this case, beliefs have

zero covariance with consumption because the latter is exogenous and hence there is zero market

price of �i. Before commenting further on equation (25) consider the following:

Corollary 4 Under perfect information and no changes in state, the Black and Scholes option

pricing formula obtains.

Corollary 4 is quite straightforward. In this case in fact, we have that the transition

matrix � = 0 and that for all t > 0, �k = 1 for some k and �j = 0 for all j 6= k. Hence, the price

of the asset is S(t) = x(t)Ck and therefore all the parameters �S = r + �x�
0
c, � = 1=Ck, �S = �x

and r = �+ �k � 1
2( +1)�c�

0
c are constant. Since we are in the Black and Scholes setup we see

that (24) turns to the standard PDE

rf =
@f

@t
+
@f

@S
S (r � �) +

1

2

@2f

@S2
�S�

0
SS

2 (26)

Notice that in the case of perfect information and constant underlying true state (� = 0)

we obtain the usual result that contingent claims do not depend on investors' preferences. This is

to be contrasted with the result in (24) that shows that this is not generally the case when there

is uncertainty. Indeed, equation (24) holds true even if � = 0, as is assumed in corollary 4. Hence,

the introduction of incomplete information in a model with constant parameters has the e�ect of

14



endogenously generating a set of state variables �i, each of which carries its own market price of

risk given by (25).

We end the discussion of this subsection with two remarks: �rst, we restate the processes

of stock returns and state variables under the risk-neutral measure and second, we rewrite the

return process under the assumption that dividends are continuously reinvested in the stock itself.

Since the latter can be considered a security with no dividends, comparison with standard models

will be easier.

Corollary 5 The risk neutral processes for stocks S and beliefs �i are given by:

dS

S
= (r � �) dt+ �SdfW � (27)

d�i = (�i � �i(�i � ��)) dt+ �idfW � (28)

where fW � is a three-dimensional Wiener process under the risk-neutral measure.

Proof. In Appendix 1.

Notice that the risk-neutralized probabilities in (28) still share the property that for all

t, �(t) 2 [0; 1] and
Pn

i=1 d�i = 0, as it was true in equation (7).

Corollary 6 Let bS be the value of the portfolio with N shares, where N grows according to dN =

N x
S
dt Then,dbS=bS = �Sdt+ �SdfW where �S and �S are de�ned in (12) and (14 ) .

Proof. In Appendix 1.

2.1 Uncertainty, Risk aversion, Volatility and Option Prices

In this subsection we provide further results of comparative statics for stock return volatility and

discuss their implications for option prices. Speci�cally, we investigate how the precision of in-

vestors' information on the true drift of dividends and their degree of risk aversion a�ect stock

returns and hence option prices. These results will be useful to interpret the numerical �ndings

in the subsequent sections. As before, we concentrate our attention to the case where the interest

rate is constant, that is �1 = �2 = ::: = �n.

We now characterize the quantities in proposition 3 under the assumption that the con-

stants Ci's are either increasing in �i or increasing and convex in �i. The �rst is quite a natural
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assumption implying that a higher expected growth rate of dividends yields a higher price-dividend

ratio. The second one, that is,
Ci�Ci�1

�i��i�1
<

Ci+1�Ci
�i+1��i

, implies that a 1% increase in expected dividends

increases the price-dividend ratio by more than 1%. This occurs for example in the following cases:

I Constant Unknown dividend drift : Investors do not know the value of �(t) which is assumed

to be constant and that can take any of the values �1 < �2 < ::: < �n. Formally, this implies

that � = 0. Solving for the constants in proposition 1 (a) we can see immediately that Ci's

satisfy the above assumptions.

II State-independent probability of switching : This is the same as case I, but with the assump-

tion that �ij = b�j , for j 6= i and �ii = �Pj 6=i
b�j = b�i �Pn

j=1
b�j, where b�1; :::; b�n are

jump intensities. From proposition 1 it is again possible to show that Ci's satisfy the above

assumptions. 8

III Two-state model : This case will be investigated in more detail in the next section.

We �rst state a useful Lemma:

Lemma 2 Let �1 = �2 = ::: = �n. Suppose that the constants Ci are increasing in �i. Then for

any distribution � we have �
�
=
Pn

j=1 �
�
j �j >

Pn
j=1 �j�j = �

We then have:

Proposition 5 (a) If Ci's are increasing, then return volatility is always greater than the dividend

volatility. That is, V = �S�
0
S > �x�

0
x

(b) Given � = (�1; :::; �n), if Ci are increasing and convex and if Ci� (�i��n) is also convex, then

a mean preserving spread on � increases the stock return volatility V = �S�S0 and decreases

the dividend yield �. 9

(c) For given � = (�1; :::; �n), if Ci are increasing and convex, a decrease in the signal's di�usion

�e2 increases the stock return volatility V = �S�S0 and but does not a�ect the dividend yield

�.

8Indeed, one can verify that de�ning the constant K =
Pn

i=1
b�i

G()��i+
P

n
j=1

b�j
where G() is de�ned in proposition 6 we

have Ci = 1=[(G()� �i +
Pn

j=1
b�j)(1�K)]:

9A mean-preserving spread of the distribution � is given by b� de�ned by b�i = �i + si where for i1 < i2 < i3 < i4;
si1 = �si2 = � > 0 , si4 = �si3 = � > 0, si = 0 otherwise, and such that 1 > b�i > 0 and �(�i1 � �i2 ) = �(�i3 � �i4).
Intuitively, a mean-preserving spread moves probability mass from the \center" of the distribution towards its \tails"
without changing the mean (see e.g. Ingersoll (1987))
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Proof. In Appendix 1.

The results of the above proposition suggest the following conjectures about the properties

of option prices. These will be con�rmed by numerical examples in the next section.

Implication 1. Option prices will generally be higher in an economy with uncertain dividend

drift rate, compared to an identical economy with a constant and observable dividend growth.

In fact, in the latter case we know from the discussion after corollary 4 that return volatility

is equal to the dividend volatility.

Implication 2. A mean preserving spread on investors' posterior distribution increases call

prices but it has an ambiguous e�ect on put prices (because of the decrease in the dividend

yield). In the case of reinvested dividends both calls and puts increase in value. Notice that

the additional condition required in point (b) of the proposition is satis�ed in the examples

(I) - (III) mentioned above.

Implication 3. Given an initial distribution � = (�1; ::; �n), an increase in the precision of

the signal increases option prices. This seemingly contradictory implication stems from the

fact that we are keeping the original � constant. Of course, more precise signals will tend to

generate more concentrated posteriors on average (and hence lower option prices on average

due to Implication 2). The intuitive reason why (c) in proposition 5 holds is the following:

consider the extreme case where today we do not know whether � = �1 or � = �2 but in an

instant (after we buy the option) we will discover its value perfectly. In this case, in the next

instant the stock price will have a jump in price to adjust to the new value of the dividend

growth rate. Hence, it is going to have an instantaneous in�nite volatility.

Finally, in order to characterize the relationship between the coe�cient of risk aversion ,

the stock return volatility, and the dividend yield, we need to be more speci�c about the constants

Ci's. Speci�cally, the next proposition holds for cases (I)-(III) above:

Proposition 6 De�ne G() = � + � � 1
2( + 1)�c�

0
c + �c�

0
x = r + �c�

0
x: In cases (I)-(III)

above, if G0() > 0, then an increase in the coe�cient of risk aversion  decreases return volatility

and increases the dividend yield.

Proof In Appendix 1.
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Implication 4. This proposition implies that an increase in the coe�cient of risk aversion has

ambiguous e�ects on option prices. In fact, in general an increase in  increases the interest

rate, decreases volatility and increases the dividend yield. While the �rst e�ect increases a

call option price, the latter two decrease it. Similarly, while the �rst two decrease a put option

price, the latter increases it. In the case of reinvested dividends put option prices decrease

with risk aversion.

3 Option Prices in the Two-State Case

In this section we discuss in more detail the case where the expected fundamental growth rate (drift)

can only assume two values. The two-state model has several advantages: �rst, since the model has

low dimensionality, it is possible to solve for option prices using Fast Fourier Transform methods

(some examples of this methodology are in Stein and Stein 1991, Heston 1993, Bates 1996, Bakshi

et al. 1997, Scott 1997). Second, it is possible to provide intuitive examples of the general results

about stock return volatility which were obtained in the previous section.

For notational convenience, let A = C2 � C1, B = C1 and b = (v2 � v1) (��
0)�

1
2 .10 We

will denote by � = �2 the only state variable, which fully describes investors' beliefs. In this case,

the volatility of stock returns, V , is given by

V =

�
�x�

0
x +

A2�2(1� �)2bb0

(�A+B)2
+ 2

A�(1 � �)(�2 � �1)

�A+B

�
(29)

and the PDE reduces to

rf =
@f

@t
+
@f

@S
S

�
r � 1

A� +B

�
+
@f

@�
((�12 + �21) (�

� � �)� �(1� �)  (�2 � �1)) + (30)

+
1

2

@2f

@S2
S2

�
�x�

0
x +

A2�2(1� �)2bb0

(�A+B)2
+ 2

A�(1� �)(�2 � �1)

�A+B

�
+

+
@2f

@S@�
S

�
�2(1� �)2Abb0

�A+B
+ �(1� �)(�2 � �1)

�
+
1

2

@2f

@�2
�2(1� �)2bb0

The price of a call option can be obtained as follows:

Proposition 7 The call option price can be unbundled into a portfolio of Arrow-Debreu securities,

each of which can be recovered from the Fourier transform of the state return density conditional

10Notice the slightly di�erent notation for b compared to the previous section. This is to avoid introducing further
notation in the paper.
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on zt = log(St), �f(!1; �t; T � t; zt), by numerical inversion. The call option price is

CU(zt;K; �; T�t) = G(�t; T�t; zt)��1(zt;K; �t; T�t)�B(�t; T�t)�K ��2(zt;K; �t; T�t); (31)

B(�t; T � t) is the time-t price of the discount bond maturing after T � t periods, G(�t; T � t; zt)

is the time-t price of a commitment to deliver a unit of stock at time T , and is hence the forward

price for a unit of stock, and �1(zt;K; �t; T � t) and �2(zt;K; �t; T � t) are, respectively, the time-t

Arrow-Debreu securities that pay a dollar if the option �nishes in the money under two di�erent

measures. The discount bond price and the forward price are given by

B(�t; T � t) = �f(0; �t; T � t; zt)

G(�t; T � t; zt) = �f(1=i; �t; T � t; zt);

and can be obtained by simply evaluating the Fourier Transform at two di�erent points. An M

term polynomial approximation of the Fourier Transform �fM(!1; �; T � t; zt) is in (6) of Appendix

2.

Proof. See Appendix 2.

To perform the inversion as well as the computation of option prices we de�ne the following

functions as in Scott (1997):

g1(!1; �; T � t; zt) = �f(1=i + !1; �t; T � t; zt)= �f(1=i; �t; T � t; zt); (32)

g2(!1; �t; T � t; zt) = �f(w1; �t; T � t; zt)= �f(0; �t; T � t; zt) (33)

Then, by the Fourier Inversion formula (c.f., for example, Kendall and Stuart 1977) the probability

distribution functions can be written as

�j(zt;K; �t; T � t) =
1

2
+

1

�

Z 1

0
Re

�
e�i!1 logKgj(!1; �t; T � t; zt)

i!1

�
d!1:

Theorem 1 in Bakshi and Madan (1999) shows that the two p.d.f.s, �1, and �2 are equivalent to

the value of the Arrow-Debreu securities that pay a dollar if the stock price exceeds the exercise

price under two di�erent measures.
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For an M-term approximation to the ordinary di�erential equation (ODE) (47) and its

subsequent Fourier inversion, we must replace �f(!1; �t; T � t; zt) by its M-term approximation

�fM(!1; �t; T � t; zt) and subsequently compute the M-term option price. In our numerical exercises

we have found that convergence of option prices occurs rapidly, and M = 6 is generally su�cient

for accuracy up to 4 decimal places for option prices on an underlying stock price of $100 (all prices

reported in the paper have been veri�ed by Monte-Carlo simulations).

The call option pricing formula in (31) and the analogous formula for puts are convenient

enough to provide various partial-derivatives of call option prices with little additional numerical

computation. Later, in Section 5 we shall study the hedging properties of U-options; in the following

Corollary we provide simple formulas for M-term approximations of partial derivatives with respect

to the stock price and beliefs.

Corollary 7 The delta of the call option price in Proposition 7 with respect to the stock price, CS,

and beliefs, C�, are given by:

CUS (zt;K; �; T � t) =
G(�t; T � t; zt)

S
[�1(zt;K; �t; T � t) + �1z(zt;K; �t; T � t)]

� K

S
B(�t; T � t)�2z(zt;K; �t; T � t)

CU� (zt;K; �; T � t) = G�(�t; T � t; zt)�1(zt;K; �t; T � t) + G(�t; T � t; zt)�1�(zt;K; �t; T � t)

� K � [B(�t; T � t)�2�(zt;K; �t; T � t) +B�(�t; T � t)�2(zt;K; �t; T � t)] ;

where the partial derivatives �iz,�i�, i = 1; 2, G�, Gz, and B� are provided in the proof in Appendix

2.

Proof. See Appendix 2.

4 Option Pricing Results

In this section we present some of the relationships between di�erent parameters of the model and

their e�ects on option prices. We �nd it useful to analyze the patterns of option prices over the

belief space in terms of three basic factors: 1) the volatility of asset prices, 2) the dividend yield,

and 3) the mean reversion of beliefs. It can be easily shown that the shapes of 1) and 2) are

similar across di�erent parameter values, and examples are shown in the top panels of Figure 5. As

evident from the top right panel, the volatility is alway highest near 1=2; actually as evident to the
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discerning eye, volatility reaches its maximum slightly to the left of 1=2. The size of the asymmetry

will depend on the parameters. The dividend yield, � = 1=(� A + B), is always monotonically

declining in �. These two factors will completely capture the pattern of option prices for `short'

maturities. To separate out the two e�ects, we will also study the properties of option prices for

the same stock, but with dividends reinvested. In solving for the PDE, we just set � = 0.

The mean reverting properties of the belief process are parsimoniously captured in the

stationary distribution over the belief space of agents | which is the long-run distribution over

beliefs. If it exists, a stationary density 	(x) of a di�usion process Xt necessarily satis�es:

	(y) =

Z
	(x) � p(t; x; y)dx; 8t > 0;

where, p(t; x; y) is the transition density function i.e., P (t; x; y) = Prob(Xt � yjX0 = x) and

dP (t;x;y)
dy

= p(t; x; y).

Lemma 3 The stationary distribution over beliefs under the risk-neutral measure is given by

	(�) = exp

��2 � (�12� + �21(1� �))

b � b0 � �(1� �)

�
�
�
1� �

�

� 2�(�(�1��2)+�12��21)

b�b0 � 1

b � b0 � (1� �)2 � �2 (34)

where b = (�1 � �2; �1 � �2; �1 � �2)
0 (��0)�

1
2 , and C1 is a constant that ensures that the density

integrates to 1. The stationary distribution of beliefs under the true measure is obtained by setting

�1 = �2 in (34).

The shape of the stationary distribution depends on the characteristics of the learning

process; some examples will be provided in the subsections below.

In each of the subsections 4.1 to 4.3, we examine the e�ects of varying one parameter of the

model. We look at the prices of at-the-money call options with a strike price of $100 and six months

to maturity. In each case, we study the variation of implied volatility of the CU(z0;K; �; T�t) price
as given in (31) as backed out by an econometrician who does not observe beliefs, but instead �nds

a level of volatility that justi�es the Black-Scholes price, when it is assumed that the econometrician

uses the unconditional average of the dividend-yield, �� =
R 1
0 1=(�A + B) � 	(�). Subsection 4.4

instead investigates the properties of implied volatilities across strike prices (\smile e�ects").

Unless noted, we always assume that the interest rate r is constant, which is achieved by

setting � = �1 = �2 in proposition 1 (b). This also implies that investors know the consumption drift
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rate. In each case, we also compare the implied volatility of U-options with the benchmark of the

unconditional average volatility �� =
R 1
0 �(�)�	(�), which would be implied by the econometrician

if the Black-Scholes (B-S) assumptions were indeed true.

4.1 Information Quality and Option Prices

We �rst examine how the precision of the signals on the true drift rate of dividends a�ects option

prices. When �e2 is small, investors' have good information about the true drift rate and hence they

\learn fast" the true drift. In this case, the stationary density 	(�) tends to be double-humped

over beliefs. When instead �e2 is high it takes them longer to learn about �(t), leading to a single

mode, inverse U-shape stationary distribution over beliefs. Examples of these are shown in the top

two panels of Figure 2. It is worth mentioning that also the frequency of switches a�ects the shape

of the stationary distribution: High values of �ij imply frequent switches and hence a stationary

distribution similar to the one for the \slow learning" case while low values of �ij imply a stationary

distribution similar to the one for the \fast learning" case.

We study cases of options on stocks with reinvested dividends, and with distributed

dividends. In each of the two bottom panels, the implied volatility is higher for the faster learning

case, due to the higher volatility that results from (17). Indeed, this is consistent with the result

in Proposition 5 and Implication 3 discussed right after it. As seen in the left panel, the maximum

implied volatility occurs to the left of 1=2 for each case, although the e�ect is larger for the faster

learning model. Option value are greater to the left of 1=2, reecting the asymmetry in volatility.

The di�erence in the implied volatilities is the largest near the maximum volatility. In the right

panel, the case of distributed dividends, we notice that the asymmetry in implied volatility almost

disappears because the left asymmetry of stock volatility is compensated by the asymmetry to the

right due to the dividend yield e�ect. From Figure 5, it is evident that the dividend yield is always

declining in �, therefore boosting call option prices for a belief of the high state larger than 1=2.

4.2 Asymmetry of Fundamentals' Growth Rates and Option Prices

In this subsection we examine the e�ects on option prices when switching probabilities out of the

high and low growth rate states are not symmetric. We will see that the mean-reversion of beliefs

in such cases are more rapid than for symmetric growth rate stocks. Keeping the same parameters

as before, we set switching parameters for the three cases displayed in Figure 3. In each case the
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average number of switches in each stock fundamental is constant. The middle panel is similar to

the slower learning case in subsection 4.1. The stationary densities on the left panels show that the

mass is concentrated near 1, for the `Persistent High Growth' case, and near 0, for the `Persistent

Low Growth' case.

We �rst notice that option prices for the low persistent case (top panel) are much higher to

the right of 1=2. This happens because when � is larger than 1=2, it is anticipated that beliefs will

return to the mode soon, taking the stock through a period of high volatility. The exact opposite

is true for the persistent high growth state | the bottom panel | where beliefs are pulled from

the left to the right, thus causing higher option prices to the left of 1=2. The intermediate case

of symmetric growth rates have close to (but not exactly) symmetric implied volatilities. Also we

note that the di�erence between the conditional implied volatilities and the unconditional volatility

(B-S implied volatility) is large for the asymmetric cases, conditional on beliefs being away from

the modal beliefs. This results because of the more rapid reversion to mode in these situations,

causing rapid changes in volatility and dividend yields, and hence gives U-option prices the e�ects

observable in models with autocorrelated volatility and jumps.

4.3 Risk-Aversion and Option Prices

Since the risk aversion parameter  enters also the market price of belief-risk (see corollary 3), it is

interesting to study the two following cases: (I) Constant drift of consumption growth, � = �1 = �2.

This is the same case studied in all the other examples in this section, and implies a zero market

price of belief-risk and a constant interest rate as shown in proposition 1. (II) Unobserved and

state-dependent drift of consumption growth, with �2 > �1. In this case, the market price of belief-

risk is non-zero and hence the belief process under the risk-neutral measure provided in equation

(28) will be used for the pricing of options.

For case (I) we �nd that in general, a higher risk-aversion parameter for the model leads

to lower implied volatilities on CU options, even though they lead to higher option prices. Implied

volatility for two levels of riskaversion are shown in the top panels of Figure 4, which have parameter

corresponding to the slow, symmetric learning case. In addition,  = 2 in the left panel and  = 10

in the right panel. As it was shown in Proposition 6 and discussed in Implication 4, the volatility

function (17) implies that volatility is actually decreasing in risk-aversion. Nonetheless, both the
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dividend yield and the risk-free rate increase with higher risk aversion. On balance, option prices do

increase (not shown), but because the BS benchmark increases more, implied volatilities decrease.

For Case (II), we �nd that the e�ect of unobservable drift of consumption growth is to

introduce an asymmetry in the implied volatilities and stationary densities over the belief space.

As seen in the middle and right panels, the stationary density has more mass to the left of ��,

which equals 1=2 for the symmetric case being considered, while implied volatilities are higher to

the right of ��. The e�ect is more pronounced for the higher risk-aversion case (in fact for  = 2,

the e�ect is barely visible). The intuition is as follows: The drift of the process under the true

measure is (�12 + �21) � (�� � �), which is positive for � < ��, and negative for � > ��; under

the risk-neutral measure this drift is reduced by the market price of risk,  � (�2 � ��), as shown in

Corollary 3. Therefore, the drift under the risk-neutral measure is less positive for � < ��, and

more negative for � > ��, resulting in a process that reverts less strongly for low beliefs and more

strongly for high beliefs and causes the stationary density to have more mass to the left of ��.

Implied volatilities become higher to the right of ��, because of the stronger pull towards ��, which

is close to �̂, the point of highest volatility.

4.4 Implied Volatility Across Strike Prices | Asymmetric Smiles and Frowns

We �nally study the behavior of implied volatility across di�erent strike prices for persistent high

growth rate stocks, such as the model calibrated to real earnings growth on the S&P 500 in Section

5. The estimated parameters of the earnings growth process are in Table 1. Figure 5 displays four

variables | the endogenous dividend yield, return volatility, stationary density, and the implied

volatility for 6-month at-the-money call options | each as a function of the agent's belief �. To

study the full implications for option prices we characterize the density and the moments of 2-

month returns for three initial beliefs, � = 0:1; 0:5; 0:9, in Figure 6. The density and moments

are easily obtained by inverting the Fourier Transform of the state return density function given

by �fMr =
PM

n=0 bn(!1; :167) � (� � :5)n, and the bn are in (51) in Appendix 2. The left-hand side

panels display the state-return density functions conditional on three di�erent initial beliefs � = 0:9

(top panel), � = 0:5 (center panel) and � = 0:1 (bottom panel). For each probability �, we also

show for comparison a Gaussian density with the same �rst and second moments as of the return

process of the uncertainty model. The right panel plots the implied volatility across strike prices

(smile/frown) for each of these cases.
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The return densities for the three cases are markedly di�erent: for a high �, the return

density exhibits a fat left tail, for a low �, the density has a fat right tail, and for the medium beliefs,

the the density is bi-modal with larger mass on the right hump. The immediate implication of these

densities is a negatively (positively) sloped implied volatility smirk for the high (low) belief case

and a frown for the medium belief case. Some testable time-series properties of the densities will be

examined in detail in Section 5. Here we simply note that, based on the stationary density in Figure

5, the calibrated model implies a smirk of either direction for about four-�fths of all observations.

The model also implies a ip in the sign of the smirk as beliefs cross 1=2. For beliefs close to 1/2,

the model implies a frown with a bi-modal density. Indeed, bimodal state price density functions

and frowns have been observed in the data, even though they are not so common; as Shimko (1993)

writes

Using our methodology, we were able to observe several instances of two-humped [state-

price] distributions for the OEX in the late 1980s; they have since become rare.

The intuition underlying these �ndings is quite straightforward. The two state model

implies that earnings growth is generated by a mixture of distributions, where the exact mixture at

a point in time is determined by the beliefs of the agent. Returns, as characterized in Proposition

2, are completely determined by the beliefs concerning earnings growth and hence inherit the

properties of the mixture. The unconditional mixture of the two distributions for the �tted model

implies a density which is both negatively skewed (because of the larger proportion of time spent

in the high growth state) and has excess-kurtosis. The power of �ltering theory becomes evident

in agents making a �ner distinction of the state of expected earnings growth and hence assigning

dynamically evolving mixtures to the two possible distributions. For high beliefs, there is a large

chance of a high density and a low chance of a low density creating in sum a negatively skewed

density as seen in the top-left panel of Figure 6. Similar logic implies the two densities in the middle

and bottom panel.

5 Calibration and Empirical Implications

Figure 6 constitutes the heart of the analysis for the two-state earnings growth model and leads

to several testable implications for the time-series of option prices. In this section we �rst present

the results of a calibration exercise performed on S&P 500 real earnings growth and then use the
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parameters and belief process generated to compare the properties of the theoretical and empirically

observed option prices. Earnings data are obtained from Standard and Poor's, and the consumption

deator from the Bureau of Economic Analysis.

Maximum likelihood estimates for the parameters are obtained from a regime-switching

estimation method as described in Hamilton (1994).11 Table 1 contains the parameter values for a

2-state regime switching model from monthly S&P 500 real earnings growth rates between 1960 and

1998, that are plotted in the top panel of Figure 7. These parameter estimates imply a relatively

fast learning process of earnings growth with a double-humped stationary distribution of estimated

states, shown in the left panel of Figure 5. The states are also asymmetric with a larger mass in the

higher state of growth. This �nding is consistent with the business cycle hypothesis that implies a

well known stylized fact, that booms (periods of high growth of stock fundamentals) are of longer

duration than recessions (periods of low and often negative growth).

Monthly time-series between 1960:01 and 1998:09 for earnings growth (top panel) and

beliefs, �t, (second panel) are presented in Figure 7. The dark bars indicate NBER dated recessions,

periods of declining gross domestic product. As seen in the �gure, �t, the �ltered probability of

being in the high state, dips during and around each recession of the US economy in the sample,

although there have been episodes in three periods, in 1967, in 1986 and in the �rst half of 1999

when earnings growth slowed even when the overall economy was in an expansionary phase. It

should be noted that implicitly we are assuming that investors' information set consists solely of

the history of earnings growth. Even though it is unlikely that past earnings are a good proxy

for investors' information, the results of this section o�er nonetheless a framework to understand

certain empirically puzzling phenomena in the options market. The concluding section discusses

avenues of future research to re�ne the empirical methodology. We now turn to the empirical

implications of the model.

11We realize that the estimates of a continuous-time di�usion process for earnings growth based on discrete approx-
imations of the likelihood function may lead to inconsistent estimates for parameters (c.f. for example Lo 1988, Ait-
Sahalia 1998). Nonetheless, we argue that for monthly estimation of parameters of the order of magnitude in this
paper, the inconsistency will be `small'. By Example 3 in Lo (1988), the MLE of a discretized log-normal di�usion
with constant drift � and sampled at intervals of length h converges (as the number of observations increases) to
�̂h = 1

h
(e�h � 1). For h = 1=12, and for � 2 [�:2; :2], the inconsistency is of the order :04 � 1=12 + O(�2h2) ' :003.

Therefore, our results are still informative for the goals of the present paper.
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5.1 Uncertainty and Volatility: ATM Implied Volatility

The third panel of Figure 7 shows the time series of the CBOE Market Volatility Index and the

ATM implied volatility for 1-month options that equates the CU(zt;K; �; T � t) price as given in

(31) with the B-S option price, using the belief process of the calibrated model. The CBOE Market

Volatility Index is based on the Black-Scholes implied volatilities of eight near-the-money, nearby,

and second nearby OEX options (S&P 100 Index) and is available on real-time data sources under

the ticker VIX. S&P 100 and 500 returns are highly correlated. To maintain consistency in its

composition, the index is constructed so that it represents the implied volatility of a hypothetical

at-the-money OEX option with thirty calendar days to expiration. For a complete description of

the construction of the index and its composition see Whaley (1993). The �gure suggests some

association between the two series.

The regressions reported in Table 2 test if the implied volatility series can be explained

by the uncertainty about fundamentals using the �ltered �t process. Line 1 shows that �t � (1��t),

which positively a�ects stock return volatility as seen in (29), has a signi�cant positive coe�cient

on the time series of implied volatility. Line 2 shows that the coe�cient remains signi�cant when

we include a lag of implied volatility. The fact that lagged implied volatility is also signi�cant is

likely because uncertainty about fundamentals is one of many sources of volatility persistence. For

example, there are several studies indicating that trading can also generate persistence in volatility

(see, for example, Bollerslev, Chou and Kroner 1992).

To test if asymmetric e�ects of beliefs on option prices are important we regress separately

on �t and �2t . If only �t � (1� �t) matters, then we should expect a positive coe�cient of �t and a

negative coe�cient of equal size but opposite sign on �2t . However, if implied volatility is asymmetric

about :5, then this restriction will be violated. Implied volatility for the calibrated model (Figure

5) is asymmetric about :5, with larger values to the left of :5. However, because most of the

observations in the sample are for �t > :5, and implied volatility is decreasing in � in this region,

one could get a smaller coe�cient (absolute value) on �t than on �2t . As seen in Lines 3 and 4, this

is indeed the case for the sample. Nonetheless, because the standard errors for the coe�cients are

fairly large, we fail to reject the null of equal coe�cients in absolute value.

In Lines 5 and 6, we test for the coe�cients of the theoretical implied volatility calculated

using the �t series, and the ATM theoretical volatility computed using Proposition 7, with and

without a lag of implied volatility. The coe�cients are statistically signi�cant, though the �R2 of
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Line 5 is smaller than in line 1 (directly regressing on uncertainty). Finally, in Line 7, we restrict

the regression in Line 5 to the post-crash period, 1988:09 { 1989:09, and obtain an �R2 of almost 17

%. The improvement in the �t of the theoretical model is not surprising as several authors have

noted that the crash of 1987 and the surrounding volatility had little to do with fundamentals.

5.2 Conditional Skewness of Returns: Ratio of 3% OTM Put-to-Call Prices

In this subsection we test if the conditional skewness restriction is indeed decreasing in beliefs as

displayed in Figure 6. To e�ciently use available option pricing data we construct a test based

on the ratio of 3% OTM Put-to-Call Prices. The ratio is a commonly used measure of market

sentiment (c.f. Bates 1999). As evident from Figure 6, the ratio will be larger for higher beliefs

as agents have a `small' probability of a large drop in returns in the event of bad earnings growth

realizations. In this and the following subsection, we use option prices and implied volatilities from

a sample of daily prices of S&P 500 call and put options between 1986:04 and 1996:05 traded on the

Chicago Board Options Exchange. The underlying index is obtained from the Chicago Mercantile

Exchange, and dividend yields are obtained from Standard and Poor's. To conduct the tests we

create a monthly time-series of 3% OTM Put-to-Call Prices interpolated from available prices on

the 15th (or closest to 15th) day of each month with approximately 30 days to maturity.

We again run two sets of regressions, which are reported in Table 3, the �rst directly on

the belief process, �t, (Lines 1 and 2) and the second on the theoretical ratio based on these beliefs

but computed using Proposition 7 (Lines 3 and 4). Both variables have statistically signi�cant

and positive coe�cients with �R2 of about six percent. Including the lag of the dependent variable

increases the �R2 to over �fty percent, and the variables remain highly statistically signi�cant.

Further intuition for the result can be obtained from the bottom panel of Figure 7 which shows

the theoretical correlation between returns and volatility. The theoretical ratio of put-to-call prices

is decreasing in this correlation: a negative correlation implies a larger mass for lower returns and

hence a higher put price. In passing we note that the empirical ratio �ts our model fairly well

except in the 1990-1991 period, when in the depths of a recession and negative earnings growth,

our model implies a low �t and hence a positive correlation between returns and volatility. However

as noted by Bates (1999), market participants seemed to have post-crash fears and bid up the ratio

to levels far in excess of the theoretical model. Despite the failure of the model's implications in

this period, we �nd explanatory power in the belief process over the 10-year sample.
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5.3 A Convexity Measure of Implied Volatility | The Implied Volatility of a

Buttery Spread

In this subsection we test if the conditional kurtosis of returns is increasing in agents' uncertainty,

�t(1��t) as displayed in Figure 6. As seen in the �gure, with medium beliefs, the return density is

bi-modal with very little mass in its tails; the right panel shows that the implied volatility curve has

as `frown' conditional on these beliefs. Low and high beliefs each have one heavy tail thus generating

kurtosis. To e�ciently use available option pricing data we construct a test based on a convexity

measure of implied volatility Yt = (Vol(K=S = 97) + Vol(K=S = 103) � 2Vol(K=S = 100)). Our

theoretical model predicts (see Figure 6, right panels) that Yt is decreasing in �t(1� �t).

We once again run two sets of regressions, which are reported in Table 4, the �rst directly

on the uncertainty process, �t(1 � �t), (Lines 1 and 2) and the second on Y U
t , the theoretically

generated time series using Proposition 7 and using the �tted belief process �t (Lines 3 and 4). As

anticipated, we �nd statistically signi�cant coe�cients, negative for the uncertainty variable and

positive for the theoretically generated curvature. The �t of Y U
t is slightly better and the variable

is more highly statistically signi�cant, but the �R2 from either regression is only around two percent.

Including the lag of the dependent variable increases the �R2 to over eight percent, and the variables

remain highly statistically signi�cant.

The convexity measure can also be viewed as the implied volatility used in writing a

buttery spread strategy. A buttery spread strategy involves going long on a call option with

a low and a high strike, and short on two call options with the a mid-way exercise price, and is

therefore formally identical to the options used in constructing Yt. The strategy leads to a pro�t

if the stock price stays close to the mid-way exercise price, but gives rise to a small loss (due to

the cost of the options) if there is a signi�cant move in either direction (c.f., for example, Hull and

White 1993). Our theoretically generated conditional densities in Figure 6 imply that the options

used to replicate the strategy will be priced relatively higher than suggested by the Black-Scholes

formula in periods of high uncertainty, and hence have higher implied volatilities. That Y U
t has a

signi�cant coe�cient in explaining Yt is some evidence that market participants' beliefs have been

in line with the calibrated model.
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5.4 Hedging Implications

In this subsection we examine some of the hedging implications of the U-Model, in particular focus-

ing the analysis on hedging `violations' documented empirically in Bakshi et al. (1999). Following

Bergman, Grundy and Weiner (1996), these authors noted that one-factor markov option pricing

models imply strong restrictions on changes in option prices relative to changes in the underlying:

more explicitly, every model in this class must satisfy 0 � �C � 1, and �1 � �P � 0 where

�C (�P ) is the partial derivative of the call (put) option with respect to the stock price. Taking

these implications to high-frequency options data (and ignoring the small time-decay components

of option price changes) Bakshi et al. (1999) classify observations satisfying �C=�S < 0, and

�P=�S > 0 as Type I violations, and �C=�S > 1, and �P=�S < �1 as Type IV violations.

Since B-S falls under the class one-factor markov models, it is unable to explain these

violations, which comprise 10-15% of empirical observations. Bakshi et al. (1999) concluded that in

order to improve hedging performance relative to B-S, option pricing models must explicitly have

stochastic volatility driven by a second factor. On a similar note, Dumas, Fleming and Whaley

(1998) have noted that to improve hedging performance, option pricing models in the Deterministic

Volatility Function (DVF) class are unable to improve the hedging performance of option pricing

models relative to B-S. In their conclusion they suggest building models in which volatility is a

function of past shocks (stock price). Our model, in fact, closely follows this suggestion, because

the belief process, which drives volatility, is driven by the the history of shocks to the process d ~W .

Even though d ~W is a 3� 1 vector, the model is easily specialized so that the stock return process

is driven by only one Wiener process: Indeed, this happens in the special case where (i) there is no

external signal on fundamentals as shown in (2), (ii) the drift of consumption growth is observable

and constant, i.e. �1 = �2 in (3), 12 and (iii) the covariance between dividend and consumption

growth is zero, i.e. �x�
0
c = 0. Even if there is only one shock (Wiener process), volatility is

still driven by beliefs and the covariance between returns and volatility will vary stochastically

with beliefs, as elaborated in Proposition 3. This is not possible under one-factor markov or DVF

models. Put simply, the stock price in the model is driven by one factor, but is not markov in itself

or that one driving factor.

12Proposition 1 implies that interest rates are constant under this assumption. In addition, for this special case the
market price of belief-risk (Corollary 3) is zero. Because return volatility is a function of beliefs, the market price of
volatility risk is therefore also zero.
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To explicitly address these violations, we study changes in prices of stocks and options

on a daily frequency, but must get around the fact that earnings data are received on a monthly

frequency and therefore �� is not observed daily. We instead construct the `total' delta with respect

to daily changes in the stock price. Partial derivatives with respect to stock prices and beliefs are

calculated as shown in Corollary 7. Note that �C = CS�S+C��� = CS�S+C�
@�
@S
�S. Therefore,

replacing @�=@S by the hypothesized relation (10) in Proposition 1 we obtain the total `delta' with

respect to the stock price for the uncertainty model �U
S = CS + C�

�A+B
SA

, and the similar relation

for puts where CS and C� are as in Corollary 7.

Total deltas for the model with parameters calibrated to S&P 500 earnings growth for

di�erent levels of moneyness and beliefs are shown in Figure 8. For a given belief, deltas follow the

familiar S-shaped pattern for B-S options (c.f. for example Hull 1993). The interesting departures

in the �gure arise across variations in beliefs. As seen, Type I violations occur for calls that are

deep OTM and the agent's belief of the high state is high (larger than .95). Similarly, Type IV

violations occur at the diagonally opposite corner, for deep ITM options and low beliefs (smaller

than .2). For put options the corners for the two types of violations are switched. The intuition

underlying the violations is simple: for � > �̂ the correlation between returns and volatility is

negative (Proposition 3) { therefore when the stock price goes up volatility can decline and reduce

the option prices leading to a Type I violation for calls. The e�ect is ampli�ed by the moneyness

of the options considered. For � < �̂ the correlation between returns and volatility is positive, and

conditional on these beliefs, when returns are positive, volatility increases, and because each e�ect

causes an increase in the option price, a potential Type IV violation is caused. Note that for a

model to be consistent with a time-series that has both types of violations, the correlation between

returns and volatility must switch signs. We now actually look at the frequency of the violations

over a ten-year sample and the ability of the U-model to explain these violations.

Data Description: We consider daily changes in option prices from the 15th (the day closest to)

to the 16th (the following trading day). We consider only maturities of approximately 1-month;

we pull on each such day the shortest maturity greater than 30 days. We get options mostly with

34-35 days, although there are a few cases in the range 32-38. The average maturity of options in

the sample is 35.3 days. We keep only those options where price quotes are obtained for both days.

Overall, we obtain 1021 calls and 1315 puts in the 122 months between 1986:4 1996:5, or about
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8.37 calls and 10.38 puts per month.13 We �nd that the time-series constructed show frequencies

of violation similar to those in Bakshi et al. (1999).

In Table 5, we compare the frequency of observed Type I and IV violations in S&P 500

options in the period between 1986:4 and 1996:5, and the frequency predicted by the U-Model,

using the deltas shown in Corollary 7, the belief process shown in Figure 7 and the moneyness of

each traded option. As seen for the full sample, the model's predicted level of Type I errors for

both calls and puts are quite close to the empirical proportions, but its predictions of Type IV

errors fall short. For calls the actual errors are seven times as many as predicted, and for puts

the actual proportion is more than twice as large as the predicted proportion. Therefore, for the

entire sample, the model is consistent with the prices of calls (puts) and the underlying moving

in the opposite (same) direction. It is less able to match the proportion of times that call (put)

option prices move in the same (opposite) direction as the stock but by a much greater amount. In

a sense, option prices react far more to changes in the underlying than predicted by the calibrated

U-model. Figure 8 reveals that the model strongly predicts Type I errors for deep OTM options

and Type IV errors for deep ITM options. We next investigate if conditioning on moneyness will

help the shortcoming of the model. As seen in the table, by conditioning on moneyness, we are

able to increase the predicted proportion of Type IV errors to the empirical proportions for put

options. For calls, the model prediction still falls short, although empirical violations happen at

higher frequencies, as predicted by the model. However, restricting the moneyness leads to a model

overprediction of Type I errors.

In summary, the U-model has some, but not complete, success in explaining violations in

changes in call and option prices. The model has very speci�c implications for regions of violations

that can be seen in Figure 8. Empirically, some violations occur for options not in these speci�ed

regions, yet conditioning on moneyness increases the empirical violation proportions. Undoubtedly

some of the violations will occur for reasons such as market-microstructure e�ects, idiosyncratic

hedging, and dynamic trading strategies, none of which are modeled here. However, the model's

accuracy can likely be improved by specifying a richer information set for agents, and a more

complex �ltering model that will provide greater degrees of freedom for empirical analysis.

13 Bakshi et al. (1999) use much �ner time-intervals from March 1 1994 to August 31 1994 with 3.8 million
observations. Nonetheless, they obtain violations for the 1-factor Markov model for all the time-intervals considered,
including 1 day.
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6 Conclusions and Extensions

This paper shows that a simple model in which investors are uncertain about the drift rate of a �rm's

dividend process is able to shed some light on many of the somewhat puzzling phenomena observed

in the option market. Speci�cally, endogenously determined and belief-dependent stochastic return

volatility, stochastic covariance between volatility and returns and a market price for \belief-risk"

can account for implied volatility \smirks" and \frowns," as well as their intertemporal instability.

We also obtain semi-closed form solutions for option prices under the assumption of a

two-state model using Fourier Transform methods. We compared the option prices implied by our

model to Black and Scholes prices and obtained a number of results, such as the following: (a) in

the case of symmetric growth rate states, option prices are greater than Black and Scholes' prices

when there is high uncertainty; (b) in the case of a persistent high growth state, option prices are

highest when investors believe times are bad or uncertain; (c) an increase in risk aversion a�ects

option prices through changes in volatility, dividend yield, interest rate and the market price of

belief-risk; (d) across strike prices, implied volatility \smirks" occur in bad or good times, while

frowns occur when there is high uncertainty. This latter �nding helps in explaining why sudden

changes from smiles to frowns occur over time, as documented in the literature.

When calibrated to S&P 500 real earnings growth for the 1960-1998 sample, the two-

state model (consistent with business cycles) implies that changes in market participants' �ltered

uncertainty about the earnings drift rate helps predict the timing of ips in implied volatility

curves between smiles and frowns. The predictive power of �ltering theory is further evidenced

in the three following time-series tests of the state-return density function from options data: a)

ATM implied volatility (persistence), b) Ratio of 3% OTM put-to-call prices (skewness), and (c)

Implied Volatility of a 3% buttery spread (kurtosis). A special case of the model where the stock

process is driven by a single Wiener process is also consistent with empirically observed hedging

`violations' (i.e. overreactions and opposite (same) sign changes in the underlying and call (put)

prices) that are not compatible with one-factor markov and deterministic volatility function models,

because the dividend yield and return volatility are driven by the entire path of the Wiener process

summarized in the investor's posterior probability distribution.

An important omission in the calibration exercises conducted in Section 5 is the appro-

priate modeling of the relationship between the agent's and econometrician's information sets. The

two simple exercises assume that they are equal and solely consist of the history of earnings growth.
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Our theoretical framework in Section 1 is consistent with agents' receiving unbiased signals on drift

rates, leading to one possible extension for the calibration.14 More generally, because it is going to

be hard to completely specify agents' information sets, an avenue for future research would be to

back out the uncertainty from option prices.

14Our study of this limited information set suggests a fast learning asymmetric growth model. More precise signals
can only lead to faster learning than calibrated, but will lead to the stationary density of the same but possibly more
concentrated shape. Therefore, the qualitative predictions on implied volatility changes will be preserved.
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Appendix 1.

Proof of Proposition 1: Rewrite (9) as

S(t) = x(t)Et
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By substituting into (35), we obtain the same set up as in the proof of proposition 3.1 in Veronesi (1999a).

Using the same methodology, we �nd that for all i = 1; :::; n

Et

�Z
1

t

M(s)

M(t)
dsj�(t) = �i

�
= Ci (37)

for constants C = (C1; :::; Cn) de�ned as follows: let

A = ��+ diag(b�) = ��+ diag (�� �) +

�
�� 1

2
( + 1)�c�

0

c + �c�
0

x

�
In

then

C = A�11n (38)

Notice �nally that if the condition of proposition 1 (a) in the text is satis�ed, then b�(t) is always positive.
From (36), this ensures that M(t) > 0 for all t > 0. Hence, from (37) we also have that Ci > 0 for all i's.

The proof of (b) is as in Veronesi (1999a) and the proof of (c) is as in Yared (1999) and Veronesi

and Yared (1999) �
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Proof of Corollary 1: From (6) we can write �dW = �(v(t) � v)dt+ (��0)
1

2 dfW and hence

dy

y
= v(t)dt +�dW = vdt+ (��0)

1

2 dfW (39)

�

Proof of Proposition 2: Notice that the following covariances hold:

d�id�
0

j = �i�j(�i � �)0 (��0)
�1

(�j � �)dt

dxd�0i = x�0x (��
0)

1

2 (��0)
�

1

2 (�i � �)�i = (�i � �)�ix

ded�0i = e�0e (��
0)

1

2 (��0)
�

1

2 (�i � �)�i = (�i � �)�ie

dcd�0i = c�0c (��
0)

1

2 (��0)
�

1

2 (�i � �)�i = (�i � �)�ic

Hence, from Ito's lemma:

dS =

nX
i=1

Ci�idx+ x

nX
i=1

Cid�i +

nX
i=1

Cidxd�
0

i

= S

 
�dt+ �0x (��

0)
1

2 dfW +

Pn

i=1 Ci[��]iPn

i=1 Ci�i
dt+

Pn

i=1 Ci�i(�i � �)0 (��0)
�

1

2 dfWPn

i=1 Ci�i
+

Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i
dt

!

= S

 
� +

��CPn
i=1 Ci�i

+

Pn
i=1 Ci�i(�i � �)Pn

i=1 Ci�i

!
dt+ S

 
�x (��

0)
1

2 +

Pn
i=1 Ci�i(�i � �)0 (��0)�

1

2Pn
i=1 Ci�i

!
dfW

Hence, �S is as de�ned in proposition 2. To get the result about �S notice that from (38):

��C =

nX
i=1

�iCi(�i � �i) +

�
�� 1

2
( + 1)�c�

0

c + �c�
0

x

� nX
i=1

�iCi � 1

Hence the expected capital gain return can be rewritten as:

Et

�
dS

S

�
= � +

Pn

i=1 �iCi(�i � �i)� 1Pn

i=1 Ci�i
+

�
�� 1

2
( + 1)�c�

0

c + �c�
0

x

�
+

Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i

= 

Pn
i=1 �iCi�iPn
i=1 Ci�i

� 1Pn
i=1 Ci�i

+ �� 1

2
( + 1)�c�

0

c + �c�
0

x

= 

Pn
i=1 �iCi�iPn

i=1 Ci�i
� x

S
+ r � �+ �c�

0

x

Finally, to show equation (12) we can see that since

Cov

�
dS

S
;
dc

c

�
= �S�

0

c =

 
�0x (��

0)
1

2 +

Pn

i=1 Ci�i(�i � �)0 (��0)
�

1

2Pn

i=1 Ci�i

!
(��0)

1

2 �c

= �0x��
0�c +

Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i
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= �c�
0

x +

Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i

The result follows immediately.�

Proof of Proposition 3: (a) From the de�nition of �� and b we can rewrite: �S = �x (��
0)

1

2 +
�
�
� � �

�
b

We then have immediately V = �2x + 2
�
�
� � �

�
+
�
�
� � �

�2
bb0

(b) Notice �rst

@
�
�
� � �

�
@�i

=
@
�P

j �jCj�j
P

j
�jCj

�Pj �j�j

�
@�i

=
Ci�i

�P
j �jCj

�
� Ci

�P
j �jCj�j

�
�P

j �jCj

�2 � �i

=
Ci

�
�i � �

�
�

�P
j �jCj

� � �i

Hence,

@V

@�i
= 2

@
�
�
� � �

�
@�i

+ 2
�
�
� � �

�
bb0
@
�
�
� � �

�
@�i

= 2
@
�
�
� � �

�
@�i

�
1 +

�
�
� � �

�
bb0
�

= 2

0@Ci
�
�i � �

�
�

�P
j �jCj

� � �i

1A�1 + ��� � �
�
bb0
�

and

@2V

@�i@�j
= 2

0@�
�
@�

�

@�j

�
Ci (

P
k �kCk)� CiCj

�
�i � �

�
�

(
P

k �kCk)
2

1A�1 + ��� � �
�
bb0
�

+2

0@Ci
�
�i � �

�
�

(
P

k �kCk)
� �i

1A @��
@�j

� �j

!
bb0

= �2
0@CjCi

�
�j � �

�
�
+ CiCj

�
�i � �

�
�

(
P

k �kCk)
2

1A�1 + ��� � �
�
bb0
�

+2

0@Ci
�
�i � �

�
�

(
P

k �kCk)
� �i

1A0@Cj
�
�j � �

�
�

(
P

k �kCkj)
� �j

1A bb0

We can then write:

dV =

NX
i=1

@V

@�i
d�i +

1

2

X
i

X
j

@2V

@�i@�j
d�id�j

=

0@ NX
i=1

@V

@�i
�i +

1

2

X
i

X
j

@2V

@�i@�j
�i�j

1A dt+

NX
i=1

@V

@�i
�idfW
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= �V dt+ �V dfW
where we can rewrite �i = �i

�
�i � �

�
b. We then have

�V =

NX
i=1

@V

@�i
�i +

1

2

X
i

X
j

@2V

@�i@�j
�i�j

Consider the two terms separately

NX
i=1

@V

@�i
�i =

NX
i=1

2

0@Ci
�
�i � �

�
�

(
P

k �kCk)
� �i

1A�1 + ��� � �
�
bb0
�0@ nX

j=1

�j�ji

1A
= 2

NX
i=1

0@ [��]iCi

�
�i � �

�
�

(
P

k �kCk)
�
X
j

�j�ji�i

1A�1 + ��� � �
�
bb0
�

Lengthy algebra also shows:

1

2

X
i

X
j

@2V

@�i@�j
�i�j =

�
��2� � �2�

�2
(bb0)

2 � 2��2�

�
�
� � �

�
bb0
�
1 +

�
�
� � �

�
bb0
�

where the only tricky part is to make use of the de�nition of ��i whenever possible and notice also that

X
j

�
��j

�
�j � �

�
��
�j � �

��
=
X
j

��j �
2
j �

�
�
�
�2

= ��2�

Overall:

�V = 2
NX
i=1

0@ [��]iCi

�
�i � �

�
�

(
P

k �kCk)
�
X
j

�j�ji�i

1A�1 + ��� � �
�
bb0
�

+
�
��2� � �2�

�2
(bb0)

2 � 2��2�

�
�
� � �

�
bb0
�
1 +

�
�
� � �

�
bb0
�

= 2
�
Et

�
d�
�
�
�Et

�
d�
���

1 +
�
�
� � �

�
bb0
�
+
�
��2� � �2�

�2
(bb0)

2

where by direct calculation one can show that

Et

�
d�
�
�
=

0@Pi[��]iCi

�
�i � �

�
�

�P
j �jCj

� � ��2�

�
�
� � �

�
bb0

1A
Finally,

�V =

NX
i=1

@V

@�i
�i =

NX
i=1

0@Ci
�
�i � �

�
�

�P
j �jCj

� � �i

1A�i
�
�i � �

� �
1 +

�
�
� � �

�
bb0
�
2b
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=
�
��2� � �2�

� �
1 +

�
�
� � �

�
bb0
�
2b

From here, we also obtain

Cov (dV; dR) = �V �
0

S = 2
�
��2� � �2�

� �
1 +

�
�
� � �

�
bb0
�2

This concludes the proof. �

Proof of Corollary 2: Let � = �2. In the two-state case with �1 = �2 we have

�
� � � =

�(1� �)(C2 � C1)(�2 � �1)

�(C2 � C1) + C2

Hence, the volatility function V in equation (17) can be written as V = �x�
0

x + K1X + K2X
2 where

X = g(�) = �(1��)
�(C2�C1)+C1

, K1 = 2(C2 � C1)(�2 � �1) and K2 = (C2 � C1)
2(�2 � �1)

2bb0. Since 0 < � < 1,

we have that the domain of X is the interval [0; X] for some X. Since both K1 and K2 are positive, V

is increasing on [0; X] and hence it has a unique maximum at X . In addition, we see that the function

X = g(�) has negative second derivative, implying that it has a unique maximum as well. Hence, we can

de�ne �̂ such that X = max�g(�) = g(�̂). In conclusion, the function V has a unique maximum at �̂. Since

the function is continuous, we must have V� < 0 if and only if � > �̂. Finally, using Ito's Lemma we can

always write

dV = �V dt+ V�d�

= ~�V dt+ V� �(1� �)(�2 � �1)bd ~W

for some drift term ~�V . Hence

Cov

�
dV;

dS

S

�
= V� �(1� �)(�2 � �1) (b�

0

S)

It follows that the sign of Cov
�
dV; dS

S

�
is the same as the sign of V� , because all the other terms are positive.

�

Proof of Proposition 4: Since we have 3 Brownian motions, we need 4 traded securities in order to obtain

a riskless portfolio.15 One of course is S, and let fi for i = 1; 2; 3 be three other traded securities, each

following the process
dfi
fi

= �fidt+ �fidfW
15The following derivation is standard. See e.g. Hull(1993).
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where

fi�fi =
@fi
@t

+
@fi
@S

(�S � �)S +

n�1X
j=1

@fi
@�j

�j +
1

2

@2fi
@S2

�S�
0

SS
2 +

n�1X
j=1

@2fi
@S@�j

S�S�
0

j

+
1

2

n�1X
k=1

n�1X
j=1

@fi
@�k@�j

�k�
0

j

fi�fi;` =
@fi
@S

S�S;` +
n�1X
j=1

@fi
@�j

�j;`

for ` = 1; 2; 3, where �fi;` is the `-th component in the volatility vector �fi. Hence, consider the portfolio

H = N0S +
3X
i=1

Nifi

where Ni's are the amount of each security in the portfolio. From Ito's lemma we can make dH riskless by

choosing Ni's so that for all ` = 1; 2; 3

N0S�S;` +

3X
i=1

Nifi�fi;` = 0 (40)

If H is riskless, we then have

N0S�S +
3X
i=1

Nifi�fi = r

 
N0S +

3X
i=1

Nifi

!

or

N0S(�S � r) +

3X
i=1

Nifi(�fi � r) = 0

The last equation and (40) imply that there must be  1,  2,  3 such that

�S � r =

3X
`=1

 `�S;` (41)

�fi � r =

3X
`=1

 `�fi;`

for all i's. Using the last equality and the de�nitions of �fi and �fi, and dropping he subscript i, we have

that every derivative security must satisfy the following PDE

@f

@t
+
@f

@S
(�S � �)S +

n�1X
j=1

@f

@�j
�j +

1

2

@2f

@S2
�S�

0

SS
2 +

n�1X
j=1

@2f

@S@�j
S�S�

0

i +
1

2

n�1X
k=1

n�1X
j=1

@f

@�k@�j
�k�

0

j

40



= rf +

3X
`=1

 `

0@@f

@S
S�S;` +

n�1X
j=1

@f

@�j
�j;`

1A
or

rf =
@f

@t
+
@f

@S
S (r � �) +

n�1X
j=1

@f

@�j

 
�j �

3X
`=1

 `�j;`

!
+
1

2

@2f

@S2
S2�S�

0

S

+

n�1X
j=1

@2f

@S@�j
S�S�

0

i +
1

2

n�1X
k=1

n�1X
j=1

@f

@�k@�j
�k�

0

j

Finally, comparing (41) to (12) and noticing that Cov
�
dc
c
; dS
S

�
= �c (��

0)
1

2 �0S we obtain that the

vector  = ( 1;  2;  3) = �c (��
0)

1

2 . Hence the market price of �j risk is

3X
`=1

 `�j;` = �c (��
0)

1

2 �0j = �j(�j � ��) = Cov

�
dc

c
; d�j

�

�

Proof of Lemma 2: Let the distribution � be given, so that we can treat
P

i �iCi as a constant. If Ci are

increasing in i, we also have CiP
i �iCi

are monotonically increasing. Notice also that we must have

C0P
i �iCi

< 1 <
CnP
i �iCi

Hence, by de�nition of ��i there must exist a k such that we have that ��i < �i for i � k and ��i > �i for

i > k. Since �1 < ::: < �n, their average computed using �� must be greater than their average computed

using �. Hence �
�

> �. �

Proof of Proposition 5: Part (a) is immediate from Lemma 2.

(b) Let b� be a mean preserving spread of the distribution �. If fi = Ci � (�i � �n) is convex then
a mean preserving spread increases both the quantity

Pn

i=1 fi�i and the quantity
Pn

i=1 Ci�i, that is

nX
i=1

fi�i <

nX
i=1

fib�i < 0 <

nX
i=1

Ci�i <

nX
i=1

Cib�i
We then have

Pn
i=1 Cib�i(�i � �)Pn

i=1 Cib�i =

Pn
i=1 Cib�i�iPn
i=1 Cib�i �

nX
i=1

b�i�i = Pn
i=1 Cib�i(�i � �n)Pn

i=1 Cib�i + �n �
nX
i=1

b�i�i
=

Pn

i=1 b�ifiPn

i=1 Cib�i + �n �
nX
i=1

b�i�i
>

Pn
i=1 �ifiPn
i=1 Ci�i

+ �n �
nX
i=1

�i�i =

Pn
i=1 Ci�i(�i � �)Pn

i=1 Ci�i
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Hence, a mean preserving spread increases the quantity

�S�
0

S = �x�
0

x + 2

Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i
+

 Pn

i=1 Ci�i(�i � �)Pn

i=1 Ci�i

!2

bb0 (42)

(c) Since bb0 = (1; 1; 0)�(��0)�1�(1; 1; 0)0 = (v11+v22) where vij is the ij-the element of (��
0)�1,

we see immediately that decreasing �2e implies increasing v22 = 1=�22e. The result follows immediately. �

Proof of Proposition 6: In cases (I) and (II) we can rewrite

Ci =
C1 � (G()� �1)

G()� �i

From the de�nition of the dividend yield and the application of the chain rule, it is immediate to show that

the dividend yield is increasing in . We now show that

V =

Pn
i=1 Ci�i�iPn
i=1 Ci�i

is decreasing in . The result immediately follows. Speci�cally, because

@V

@
=
@V

@G
�G0()

we just show that the �rst term is negative. First notice that

V =

Pn

i=1

�
1

G��i

�
�i�iPn

i=1

�
1

G��i

�
�i

where G = G(). Using the same steps as in the proof of Lemma 3.2 (c) in Veronesi (1998) we obtain that

@V
@G

< 0 if and only if
nX
i=1

���i �i >
nX
i=1

��i �i

where

���i =

�i
(G��i)2Pn
i=1

�i
(G��i)2

=
��i

G� �i

 Pn
i=1

1
G��iPn

i=1
1

(G��i)2

!
(43)

and �� is de�ned in the proof of proposition 3. Since the last parenthesis is independent of i and since G��i
is decreasing in i, we have that ���i > ��i for high indices i and viceversa. Hence, the average computed

using the distribution ��� must be higher than the average computed using the distribution ��.

Finally, case (III) is immediate from direct computation: from the results in proposition 1 we can

write:

C2 =
G()� �1 + �21 + �12

D
; C1 =

G()� �2 + �21 + �12
D

(44)
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where D is just a positive common denominator. Hence, we can rewrite A = C2 � C1 = (�2 � �1)=D and

the ratio: B=A = (G()� �2 +�21 + �12)=(�2� �1) Since it is immediate to rewrite �S = �x(��
0)

1

2 + (�(1�
�)b)=(� +B=A); we see that G0() > 0 implies that �S�

0

S decreases with . �

Appendix 2.

Proof of Proposition 7 The Fourier Transform of the state-return density function over primitive states

can be characterized by the usual Fokker-Planc backward equation (c.f., for example Karlin and Taylor 1982),

which is the fundamental PDE above (30) along with the initial condition f(zt; �t; 0) = �z�zt , where � stands

for the Dirac function, and the last argument of f(�; �) denotes time to maturity. Substituting z = logS into

and letting � � T � t be the time to maturity implies that the fundamental PDE can be written as

r(�)f = �@f
@�

+
@f

@z

"
r � � � 1

2

 
�x�

0

x +
A2�2(1� �)2bb0

(�A+B)2
+ 2

A�(1� �)(�2 � �1)

�A+B

!#

+
@f

@�
((�12 + �21) (�

� � �)� �(1� �)  (�2 � �1)) +
1

2

@2f

@z2

 
�x�

0

x +
A2�2(1� �)2bb0

(�A+ B)
2 + 2

A�(1� �)(�2 � �1)

�A+B

!

+
@2f

@z@�

�
�2(1� �)2Abb0

�A+B
+ �(1� �)�xb

0

�
+
1

2

@2f

@�2
�2(1� �)2bb0: (45)

We recall that r(�) = � + (�2� + �1(1� �)) � 1=2( + 1)�c�
0

c in equilibrium. De�ne

A1(�) = (�12 + �21) � (�� � �)� �(1� �)  (�1 � �2);

A2(�) =
A2 bb0 (1� �)2 �2

(� A+B)
2 + �x�

0

x +
2A (1� �) � b�0x

� A+B
;

A3(�) =
Abb0 (1� �)

2
�2

� A+B
+ (1� �) � (�1 � �2); and,

A4(�) = bb0�2 (1� �)2 :

Taking a Fourier Transform on both sides of the PDE (45) with respect to z and using the frequency

variable !1 and i =
p�1, implies

r(�) �f = �@
�f

@�
� i!1 �f

�
r � � � 1

2
A2(�)

�
+
@ �f

@�
A1(�)

� !21
2

�fA2(�) � i!1
@ �f

@�
A3(�) +

@2 �f

@�2
1

2
A4(�): (46)

with initial condition �f(!1; �; 0; zt) = ei!1zt (notice that the Fourier Transform depends on the initial log

price, zt). Now taking another Fourier Transform on both sides of the PDE (46) with respect to the time
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variable and using !2 as the frequency variable implies that

�ei!1zt = f̂

�
�r + i!2 � i!1(r � � � 1

2
A2(�)) � !21

2
A2(�)

�
+ f̂� (A1(�) � i!1A3(�)) +

1

2
f̂��A4(�): (47)

Now suppressing !1 and !2 for the time being, we further de�ne

h1(�) =
1

2
A4(�)

h2(�) = A1(�)� i!1A3(�);

h3(�) = �r(�) + i!2 � i!1

�
r(�) � 1

�A +B

�
� !21

2
A2(�)

(47) can also be written concisely as �ei!1zt = h1(�)f̂�� + h2(�)f̂� + h3(�)f̂ . For given !1, !2, (47) is an

ODE in � with no known explicit analytical solution. Looking ahead, it is evident that the solution of the

system of di�erence equations that will solve the ODE (provided at the end of this proof) is homogeneous

of degree 1 in the forcing term h0. Anticipating a future fourier inversion with respect to !2, we �rst solve

the slightly simpler equation �1 = h1(�)f̂�� + h2(�)f̂� + h3(�)f̂ . Due to homogeneity, the inverse fourier

transform of the solution of the �rst equation with respect to !2, will coincide with �ei!1zt times the fourier
inversion with respect to !2 of the solution of the latter equation (the logic is simply that �ei!1zt will pass
out of the integral for the fourier inversion with respect to !2).

We solve �1 = h1(�)f̂�� +h2(�)f̂� +h3(�)f̂ with a series solution about an ordinary point of the

ODE (c.f., for example, Rainville 1964, Boyce and DiPrima 1997). Because A4(0) = A4(1) = 0, 0 and 1 are

singular points of the ODE. However, 0:5 is an ordinary point of the ODE, and the solution can be written

in the form

f̂(!1; �; !2) =
1X
n=0

an � (� � :5)n: (48)

De�ne the functions

p(�) � (A1(�) � i!1A3(�))
1
2A4(�)

=
h2(�)

h1(�)

q(�) �
��r + i!2 � i!1(r � �)� !21A2(�)

�
1
2A4(�)

=
h3(�)

h1(�)

By Theorem 5.3.1 in Boyce and DiPrima (1997), the radius of convergence of the series solutions

is atleast as large as the minimum of the radii of convergence of the series for p and q.16 It is well known

that, when p and q are ratios of complex polynomials (as is the case), then convergent series exist for these

functions at �0 when the denominator series of p and q does not vanish, i.e.,
1
2A4(�0) 6= 0: Further, the radius

of convergence of p and q is atleast as large as the distance from �0 to the nearest zero of the denominator

16This theorem has been attributed to Immanuel Lazarus Fuchs by several authors. See also Theorem 20 in
Rainville (1964).

44



series. Therefore, a series solution of the form in (48) converges atleast for all � 2 (0; 1). The di�erence

equation to be satis�ed by the an, for n = 2; � � � ;1, is provided below.

David (1997) (Property 1) showed that the updating process f�tg has `entrance' boundaries at 0
and 1; neither boundary can be reached from the interior of the state space, but it is possible to consider

processes that begin there. In such cases, it is impossible to impose arbitrary boundary conditions on the

ODE (47) at 0 and 1. The boundary conditions are determined implicitly by formulating the same ODE as

� ! 0; 1. Since h1(0) = h1(1) = 0, to satisfy the entrance boundary conditions at 0 and 1, the coe�cients

an, n = 1; � � � ;M , must also satisfy the equations:

h2(0) � f̂�(0) + h3(0) � f̂(0) = �1; (49)

h2(1) � f̂�(1) + h3(1) � f̂(1) = �1: (50)

Because we approximate the series solution (48) by a �nite expansion f̂M =
PM

n=0 an(!1; !2) � (� � :5)n,

substituting f̂M (0) =
PM

n=0 an �(�:5)n, and f̂M (1) =
PM

n=0 an �(:5)n into (49) and (50) provide two further
equations in an, n = 0; � � � ;M . Therefore, overall there are M equations in m unknowns, and since none of

the equations is redundant, they permit a unique solution of (a0; a1; � � � ; aM ).

The coe�cients an, n = 0; � � � ;M , satisfying the di�erence equation shown below, are each poly-

nomials in !1 and !2, and we can write these as functions an(!1; !2). Performing a term-by-term numerical

fourier inversion (the terms (� � :5)n pass out of the integration) of the solution (48) with respect to !2

using the Fourier inversion formula provides

bn(!1; T � t) =
1

�

Z
1

0

Re
h
e�i!2(T�t)an(!1; !2)

i
d!2: (51)

Overall, the M-term approximate solution to the Fourier Transform of the state return density function is

given by17

�fM (!1; �; T � t; zt) = ei!1zt
MX
n=0

bn(!1; T � t)(� � :5)n:

A second numerical fourier inversion, as shown below Proposition 7, then provide the values of the primitive

securities used for pricing options. This is completely analogous to the solutions for option pricing with

stochastic jumps and stochastic volatility such as in Heston (1993), Bates (1996), Bakshi et al. (1997), and

Scott (1997).

Coe�cients for the Di�erence Equation

We explicitly provide the di�erence equation that must be satis�ed by the coe�cients an, for

n = 2; � � � ;M . in the �nite approximation of the series solution (48). We start by making the �nite Taylor

17Writing the Fourier Transform in this form rather than performing a double fourier inversion on the solution (48)
will be advantageous in the formulation of the `delta' of the option price with respect to the stock price.
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Series expansions of the coe�cient functions of the ODE (47). We de�ne (hiq) for q = 1 to q = Q as the vector

of coe�cients of hi � (�A+B)2 for i = 1; 2; 3 . It can be easily veri�ed that Q equals 7,6, and 5 respectively

for h1, h2, and h3 respectively. Similarly h0q, q = 1; 2; 3 are the coe�cients of the expansion of �(�A+B)2.

To satisfy the ODE (47) standard series solutions methods (c.f., for example, Rainville 1964, Boyce and

DiPrima 1997) imply that the coe�cients must satisfy the following recursive system of equations.

h01 = h11 � 2 � a2 + h21 � a1 + h31 � a0;
h02 = h11 � 2 � 3 � a3 + h12 � 2 � a2 + h21 � 2 � a2 + h22 � a1 + h31 � a1 + h32 � a0;
h03 = h11 � 3 � 4 � a4 + h12 � 2 � 3 � a3 + h13 � 1 � 2 � a2 + h21 � 3 � a3 + h22 � 2 � a2 + h23 � a1 + h31 � a2

+ h32 � a1 + h33 � a0;
0 = h11 � 4 � 5 � a5 + h12 � 4 � 3 � a4 + h13 � 3 � 2 � a3 + h14 � 2 � a2 + h21 � 4 � a4 + h22 � 3 � a3

+ h23 � 2 � a2 + h24 � a1 + h31 � a3 + h32 � a2 + h33 � a1 + h34 � a0;
0 = h11 � 5 � 6 � a6 + h12 � 4 � 5 � a5 + h13 � 3 � 4 � a4 + h14 � 2 � 3 � a3 + h15 � 2 � a2 + h21 � 5 � a5

+ h22 � 4 � a4 + h23 � 3 � a3 + h24 � 2 � a2 + h25 � a1 + h31 � a4 + h32 � a3 + h33 � a2 + h34 � a1 + h35 � a0;
0 = h11 � 6 � 7 � a7 + h12 � 5 � 6 � a6 + h13 � 4 � 5 � a5 + h14 � 3 � 4 � a4 + h15 � 2 � 3 � a3 + h16 � 1 � 2 � a2

+ h21 � 6 � a6 + h22 � 5 � a5 + h23 � 4 � a4 + h24 � 3 � a3 + h25 � 2 � a2 + h26 � a1 + h31 � a5
+ h32 � a4 + h33 � a3 + h34 � a2 + h35 � a1;

0 = h11 � (m + 2) � (m + 1) � am+2 + h12 � (m + 1) � (m) � am+1 + h13 � (m) � (m� 1) � am
+ h14 � (m� 1) � (m� 2) � am�1 + h15 � (m� 2) � (m� 3) � am�2 + h16 � (m� 3) � (m� 4) � am�3
+ h17 � (m� 4) � (m� 5) � am�4 + h21 � (m + 1) � am+1 + h22 � (m) � am + h23 � (m� 1) � am�1
+ h24 � (m� 2) � am�2 + h25 � (m� 3) � am�3 + h26 � (m� 4) � am�4 + h31 � am + h32 � am�1
+ h33 � am�2 + h34 � am�3 + h35 � am�4; for m � 6:

To approximate the solution by a series of length M, the set of M-2 equations are recursively solved for an,

n = 2; � � � ;M , as functions of a0, and a1. The boundary conditions provide the two remaining equations to

solve the ODE. �

Proof of Lemma 3. We closely follow the analysis in Chapter 15 of Karlin and Taylor (1982). In the two

state case the posterior probability follows the di�usion process

d� = �(�)dt + �(�)dW (52)

The stationary density, 	(x), of the di�usion process (52) must satisfy

1

2

@2

@y2
[�2(y) �  (y)]� @

@y
[�(y) �  (y)] = 0;
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where under the risk-neutral measure �(�) = (�12 + �21) (�
� � �) �  � � � (�2 � ��), �(�) = �(1 � �)b, and

�� = �12
�21+�21

Solving the di�erential equation yields:

 (x) = m(x)[C1S(x) + C2];

where s(x) = exp
��2 R x[�[y]=�2(y)]dy�, S(x) = R x s(x), andm(x) = 1=[�2(x)s(x)]; C1 and C2 are constants

that guarantee that  (x) � 0 on (0; 1) and
R r
l
 (�)d� = 1. Because 0 and 1 are both entrance boundaries

for �t, S(x)!1 as x! 0 or x! 1. In this case, C2 is chosen equal to zero and the stationary density is

 (x) =
m(x)R 1

0
m(�)d�

:

Now substituting �(x), and �(x) into m(x), completes the proof. The stationary density under the true

measure is obtained by following the same steps, with �(�) = (�12 + �21) (�
� � �). �

Proof of Corollary 7. Using theM term polynomial approximation of the Fourier Transform �fM (!1; �; T�
t; zt) in (6) and the characterization in Proposition 7, B(�t; T�t) =

PM
n=0 bn(0; T�t)(��:5)n, and therefore

B�(�t; T � t) =
PM

n=1 nbn(0; T � t)(�� :5)n�1. Similarly, G(�t; T � t; zt) = ezt
PM

n=0 bn(1=i; T� t)(�� :5)n,
GS(�t; T � t; zt) = G=S, and G�(�t; T � t; zt) = ezt

PM

n=1 nbn(1=i; T � t)(�� :5)n�1. The functions g1 and
g2 in (32) and (33) can be written as series whose partial derivatives are evident:

g1(!1; �; T � t; zt) =
ei!1zt

PM

n=0 bn(1=i+ !1; T � t)(� � :5)nPM
n=0 bn(1=i; T � t)(� � :5)n

g2(!1; �; T � t; zt) =
ei!1zt

PM

n=0 bn(!1; T � t)(� � :5)nPM
n=0 bn(0; T � t)(� � :5)n

:

Now by passing partial derivatives under the integral of the fourier inversion, one obtains the desired func-

tions; for example,

�j�(zt;K; �t; T � t) =
1

�

Z
1

0

Re

�
e�i!1 logKgj�(!1; �t; T � t; zt)

i!1

�
d!1:

Finally, using the product and chain rules of di�erentiation provide the stated expressions. �
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Table 1: 2-State Model Calibrated to Real Earnings Growth on the S&P 500: 1960-1998

�1 �2 �12 �21 �x �xc

-.154 .109 .813 .406 .073 .061

Parameter estimates are based on maximum likelihood
using the regime-switching estimation method as de-
scribed in Hamilton (1994).
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Table 2: Implied Volatility Regression

Dependent Variable: Implied Volatility (Percent) ;Vt

No. Constant Vt�1 �t(1� �t) �t �2t VUt �R2

1. 17:03 25:24 0:076
(1:01)� (10:13)�

2. 1:85 0:85 12:55 0:717
(0:71)� (0:03)� (5:22)�

3. 18:33 21:13 �22:70 0:074
(1:49)� (10:68)� (10:44)�

4. 2:49 :84 10:64 �11:39 0:716
(:86)� (:03)� (4:80)� (4:87)�

5. 14:38 0:34 0:079
(2:36)� (0:14)�

6. �:25 :85 0:22 0:717
(1:41) (:03)� (:09)�

7. 10:7 0:48 0:168
(1:98)� (0:13)�

Standard errors are in parenthesis. The symbol * indicates statistical signi�cance at the 5% level. The
estimation uses the Newey and West (1987) consistent variance-covariance matrix. We reject the null
hypothesis of a unit root for each of the series based on the Dickey and Fuller (1979) statistic. Vt is the
CBOE Market Volatility Index, VIX. The belief process, �t, is �ltered from the calibrated model and is
shown in Panel (B) of Figure 7. V

U
t is the ATM implied volatility for U option prices computed using

Proposition 7 and the belief process. Lines 1 through 6 are based on a sample from 1986:1 through 1998:9,
and Line 7 is based on the post-crash subsample from 1988:09 { 1989:09.
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Table 3: 3% OTM Put-to-Call Price Regression (Skewness)

Dependent Variable: 3% OTM Put-to-Call Price (Percent), Pt=Ct

No. Constant Pt�1=Ct�1 �t PU
t =C

U
t

�R2

1. 119:05 41:98 :062
(7:16)� (15:21)�

2. 36:19 :68 15:07 :500
(15:07)� (:113)� (7:75)�

3. 73:37 :67 :063
(22:26)� (:22)�

4. 18:50 :25 :69 :503
(16:02) (:11)� (:10)�

Standard errors are in parenthesis. The symbol * indicates statistical signi�cance at the 5% level. The
estimation uses the Newey and West (1987) consistent variance-covariance matrix. We reject the null
hypothesis of a unit root for each of the series based on the Dickey and Fuller (1979) statistic. Option prices
and implied volatilities are from a sample of daily prices of S&P 500 call and put options between 1986:04
and 1996:05 traded on the CBOE. The underlying index is obtained from the CBOE, and dividend yields
are obtained from Standard and Poor's. The dependent variable is the monthly time-series of 3% OTM
Put-to-Call Prices interpolated from available prices on the 15th (or closest to 15th) day of each month with
approximately 30 days to maturity. The right-hand variable PU=CU is computed from U option prices using
Proposition 7 and the belief process �ltered from the calibrated model shown in Panel (B) of Figure 7.



Table 4: Convexity { Buttery Spread Regression (Kurtosis)

Dependent Variable: Convexity Measure (Percent), Yt

No. Constant Yt�1 �t(1� �t) Y U
t

�R2

1. 1:16 �7:6 :018
(:54)� (4:41)�

2. �:88 :27 �5:8 :081
(:44)� (:19) (2:70)�

3. �:08 1:27 :021
(:48) (:74)�

4. �:10 :27 1:01 :082
(:45) (:19) (:50)�

Standard errors are in parenthesis. The symbol * indicates statistical signi�cance at the
10% level. The estimation uses the Newey and West (1987) consistent variance-covariance
matrix. We reject the null hypothesis of a unit root for each of the series based on the
Dickey and Fuller (1979) statistic. Option prices and implied volatilities are from a sample
of daily prices of S&P 500 call and put options between 1986:04 and 1996:05 traded on the
CBOE. The underlying index is obtained from the CBOE, and dividend yields are obtained
from Standard and Poor's. The dependent variable is a convexity measure de�ned as
Yt = (Vol(K=S = 97) + Vol(K=S = 103)� 2Vol(K=S = 100)), interpolated from available
prices on the 15th (or closest to 15th) day of each month with approximately 30 days to
maturity. Y U

t is the theoretical Yt using Proposition 7 at the �tted belief process �t shown
in Panel (B) of Figure 7.



Table 5: Hedging `Violations'

Test Data (Number) Model (Number) Sample Size Data (Proportion) Model (Proportion)

Full Sample | Type I Errors:

�C=�S < 0 147 163 1021 :144 :159
�P=�S > 0 191 150 1315 :145 :114

More Than 3 % OTM Options | Type I Errors:

�C=�S < 0 54 121 330 :164 :367
�P=�S > 0 114 150 686 :167 :219

Full Sample | Type IV Errors:

�C=�S > 1 120 18 1021 :117 :017
�P=�S < �1 110 43 1315 :084 :032

More Than 3 % ITM Options | Type IV Errors:

�C=�S > 1 49 18 156 :314 :115
�P=�S < �1 27 25 100 :250 :270

Data are daily changes in option prices between the 15th (the day closest to) and the 16th (the following trading day)
of each month between 1986:4 and 1996:5. Option prices and implied volatilities are from a sample of daily prices
of S&P 500 call and put options between 1986:04 and 1996:05 traded on the CBOE. Model �U are calculated using
the deltas as shown in Corollary 7 for the belief process shown in Panel (B) of Figure 7 and the moneyness of each
traded option.



Figure 1: Examples of Historical Implied Volatility Curves
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Implied volatility curves are displayed for the dates shown from a sample of daily prices of S&P 500 call and

put options between 1986:04 and 1996:05 traded on the Chicago Board Options Exchange. The underlying

index is obtained from the Chicago Mercantile Exchange, and dividend yields are obtained from Standard

and Poor's. A quadratic spline (polynomial of 3rd order) is �tted to all call options traded on the dates

shown. The Akaike (1973) information criterion implies that 3rd order polynomials best �t the data at each

of dates shown.



Figure 2: Information Quality and Implied Volatility of U-Option Prices
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Top panel: Stationary density of the belief process � under two di�erent assumptions about the precision of
signals about dividend growth. Left panel uses �2 = 1000 (uninformative signals), right panel uses �e = :05
(informative signal). The stationary densities in the top panels are computed using (34). Bottom panel:
Implied volatility for a 6-month at-the-money call option obtained by equating the BS option price with the

unconditional moments of dividends, with the CU(zt;K; �; T � t) price as given in (31). In each graph, the
top curved line is for high precision of signals (�e = :05). The straight horizontal line is the implied volatility
for the unconditional stock volatility and dividend yield. The other parameters used are � = :04 (time-
discount),  = 2 (risk-aversion), �c = :036 (consumption growth volatility), �1 = �2 = �� = :024 (constant
and observable growth rate of consumption), �2 = :05 (high growth rate of dividends), �1 = �:05 (low growth
rate of dividends), �12 = :6, �21 = :6 (switching parameters), �x = :073 (volatility of earnings-growth) and
�xc = :061 (correlation between earnings and consumption growth).



Figure 3: Asymmetry of Fundamentals' Growth Rates and Implied Volatility of U-Option Prices
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Left-hand panels plot stationary densities and right-hand panels plot the implied volatilities for 6-month,

ATM call options obtained by equating the BS option price with the unconditional moments of dividends,

with the CU(zt;K; �; T � t) price as given in (31). Straight lines are unconditional volatilities. Top panel:

Persistent low growth rate with switching probabilities �21 = 1, �12 = :2. Middle panel: Symmetric growth

rates with �21 = :6, �12 = :6; Bottom panel: Persistent high growth rate with �21 = :2, �12 = 1. The

other parameters used are � = :04 (time-discount),  = 2 (risk-aversion), �c = :036 (consumption growth

volatility), �x = :073 (earnings growth volatility), �1 = �2 = �� = :024 (constant and observable growth

rate of consumption), �2 = :05 (high growth rate of dividends), �1 = �:05 (low growth rate of dividends)

�x = :073 (volatility of earnings-growth), �xc = :061 (correlation between earnings and consumption growth)

and �e = 1000 (uninformative signal). The parameters imply that the average number of switches are the

same for each set. The stationary densities in the left panels are computed using (34). The implied volatilities

in the right panels are the volatilities that equate the BS option price with the unconditional moments of

dividends, with the CU(zt;K; �; T � t) price as given in (31).



Figure 4: Risk Aversion and Implied Volatility of U-Option Prices
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Implied volatilities are for 6-month ATM call options obtained by equating the BS option price with the

unconditional moments of dividends, with the CU(zt;K; �; T � t) price as given in (31). Straight lines are

the unconditional volatilities. Top Panels: Observable and constant drift of consumption growth with

�1 = �2 = :024; coe�cient of risk aversion  = 2 for the left panel and  = 10 in the right panel. Middle

Panels: Unobservable drift of consumption growth with �1 = :028, and �2 = :02;  = 2 for the left panel

and  = 10 in the right panel. Bottom Panels: Stationary densities of the risk-neutral beliefs process given

in Lemma 3 under observable and unobservable drifts respectively for  = 10. The parameters common to

all panels are � = :04 (time-discount), �c = :036 (consumption growth volatility), �1 = :05 (high growth

rate of dividends), �2 = �:05 (low growth rate of dividends), �12 = :5, �21 = :5 (switching parameters),

�x = :073 (volatility of earnings-growth), �xc = :061 (correlation between earnings and consumption growth)

and �e = 1000 (uninformative signal).



Figure 5: Calibrated Model: 2-state case, 1960:01-1998:09
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Top panels: The horizontal lines are the unconditional means of the variables shown computed by using the

stationary density. Left panel plots the dividend yield, that equals 1=(�A+B), where A = C2�C1, and B =

C1, and the Ci are computed using Proposition 1. The right panel plots the volatility function
p
V , computed

using (17) for the two-state case. Bottom panels: Left panel plots the stationary density computed using

(34). The right panel plots the implied volatility for 6-months, at-the-money call options, obtained by

equating the BS option price using the unconditional moments of dividends, with the CU(x0;K; �; T�t) price
as given in (31). The other parameters used are those for the 2-state model calibrated to real earnings growth

on the S&P 500, as given in Table 1. The parameters are � = :04 (time-discount),  = 2 (risk-aversion),

�c = :036 (consumption growth volatility), �x = :073 (earnings growth volatility), �1 = �2 = �� = :024

(constant and observable growth rate of consumption), �1 = :109 (high growth rate of dividends), �2 = �:154
(low growth rate of dividends), �12 = :406, �21 = :813 (switching parameters), �x = :073 (volatility of

earnings-growth), and �xc = :061 (correlation between earnings and consumption growth).



Figure 6: Smirks and Frowns in the Two-State Calibrated Model
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Left Panels: The state-return density functions conditional on three di�erent initial beliefs � = 0:9 (top

panel), � = 0:5 (center panel) and � = 0:1 (bottom panel) with two months to maturity. The density is the

inverse Fourier Transform of the state return density function given by �fMr =
PM

n=0 bn(!1; :167) � (� � :5)n,

and the bn are in (51) in Appendix 2. Right Panels: The corresponding implied volatility curves across

di�erent strike prices for call option prices with 2 months to maturity obtained by equating the BS option

price with with the CU(zt;K; �; T � t) price as given in (31). The parameters used are those for the 2-state

model calibrated to real earnings growth on the S&P 500, as given in Table 1. The parameters are � = :04

(time-discount),  = 2 (risk-aversion), �c = :036 (consumption growth volatility), �x = :073 (earnings

growth volatility), �1 = �2 = �� = :024 (constant and observable growth rate of consumption), �1 = :109

(high growth rate of dividends), �2 = �:154 (low growth rate of dividends), �12 = :406, �21 = :813 (switching

parameters), �x = :073 (volatility of earnings-growth), and �xc = :061 (correlation between earnings and

consumption growth).



Figure 7: Two-State Filter on S&P 500 Real Earnings Growth
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Panel (A) plots historical real earnings growth for S&P 500 �rms from 1960:01 to 1998:10. Panel (B)

plots the �ltered posterior probability to be in the high state. Panel (C) plots the ATM implied volatility

for 1-month options that equates the CU(zt;K; �; T � t) price as given in (31) with the BS option price,

using the belief process in (B) and the S&P 100 implied volatility index (VIX) from 1986:1 to 1998:9. Panel

(D) plots the covariance between returns and volatility Cov (dV; dR) = �S�
0

V given by equation (23) in the

text.



Figure 8: Delta `Violations'

90

95

100

105

110

Stock Price

0

0.2

0.4

0.6

0.8

Belief

0

0.5

1

Call Delta

90

95

100

105Stock Price

90

95

100

105

110

Stock Price

0

0.2

0.4

0.6

0.8

Belief

-1

-0.5

0

Put Delta

90

95

100

105Stock Price

Observations satisfying �U
C < 0, and �U

P > 0 are classi�ed as Type I violations, and �U
C > 1, and

�U
P < �1 as Type IV violations. Option deltas are calculated using Corollary 7. The options have a strike

price of $100 and parameters are calibrated to the 2-state model on real earnings growth on the S&P 500

between 1960:1 and 1998:9. The parameters are � = :04 (time-discount),  = 2 (risk-aversion), �c = :036

(consumption growth volatility), �x = :073 (earnings growth volatility), �1 = �2 = �� = :024 (constant and

observable growth rate of consumption), �1 = :109 (high growth rate of dividends), �2 = �:154 (low growth

rate of dividends), �12 = :406, �21 = :813 (switching parameters), �x = :073 (volatility of earnings-growth),

and �xc = :061 (correlation between earnings and consumption growth).


